{"title":"具有对称润湿性的夹层铜泡沫,用于方向独立的雾收集","authors":"Jinyue Xiao, Xin Zhang, Zhecun Wang","doi":"10.1021/acs.langmuir.5c00299","DOIUrl":null,"url":null,"abstract":"The Janus membrane demonstrates its advantages in timely drainage and directional water transport properties for efficient fog water collection, which helps alleviate global water shortages. However, the direction-dependent collection and inefficient directional water transport properties limit its widespread application. Herein, a single-layered sandwich-structured copper foam that features a superhydrophilic inner layer and double-deck external hydrophobic layers is prepared by a simple method. This innovative architecture demonstrates direction-independent fog harvesting capabilities through the synergistic integration of symmetric wettability gradients and robust structural integrity. Such sandwiched copper foam shows its superiority in rapid directional water transport and timely drainage properties which can quickly regenerate the fresh outer hydrophobic surface as well as the direction-independent unidirectional water transport properties. The rapid directional water transport property combined with the timely drainage of the sandwiched copper foam benefits the continuous better performance of fog collection compared to that of conventional Janus membranes. Clearly, the development of such sandwiched copper foam with a direction-independent unidirectional water transport property enables the effective and durable collection of fog droplets in environments with dynamically changeable winds. Overall, this work provides a new idea for the fabrication of advanced materials for direction-independent fog collection.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"86 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sandwiched Copper Foam with Symmetrical Wettability for Direction-Independent Fog Collection\",\"authors\":\"Jinyue Xiao, Xin Zhang, Zhecun Wang\",\"doi\":\"10.1021/acs.langmuir.5c00299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Janus membrane demonstrates its advantages in timely drainage and directional water transport properties for efficient fog water collection, which helps alleviate global water shortages. However, the direction-dependent collection and inefficient directional water transport properties limit its widespread application. Herein, a single-layered sandwich-structured copper foam that features a superhydrophilic inner layer and double-deck external hydrophobic layers is prepared by a simple method. This innovative architecture demonstrates direction-independent fog harvesting capabilities through the synergistic integration of symmetric wettability gradients and robust structural integrity. Such sandwiched copper foam shows its superiority in rapid directional water transport and timely drainage properties which can quickly regenerate the fresh outer hydrophobic surface as well as the direction-independent unidirectional water transport properties. The rapid directional water transport property combined with the timely drainage of the sandwiched copper foam benefits the continuous better performance of fog collection compared to that of conventional Janus membranes. Clearly, the development of such sandwiched copper foam with a direction-independent unidirectional water transport property enables the effective and durable collection of fog droplets in environments with dynamically changeable winds. Overall, this work provides a new idea for the fabrication of advanced materials for direction-independent fog collection.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c00299\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00299","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sandwiched Copper Foam with Symmetrical Wettability for Direction-Independent Fog Collection
The Janus membrane demonstrates its advantages in timely drainage and directional water transport properties for efficient fog water collection, which helps alleviate global water shortages. However, the direction-dependent collection and inefficient directional water transport properties limit its widespread application. Herein, a single-layered sandwich-structured copper foam that features a superhydrophilic inner layer and double-deck external hydrophobic layers is prepared by a simple method. This innovative architecture demonstrates direction-independent fog harvesting capabilities through the synergistic integration of symmetric wettability gradients and robust structural integrity. Such sandwiched copper foam shows its superiority in rapid directional water transport and timely drainage properties which can quickly regenerate the fresh outer hydrophobic surface as well as the direction-independent unidirectional water transport properties. The rapid directional water transport property combined with the timely drainage of the sandwiched copper foam benefits the continuous better performance of fog collection compared to that of conventional Janus membranes. Clearly, the development of such sandwiched copper foam with a direction-independent unidirectional water transport property enables the effective and durable collection of fog droplets in environments with dynamically changeable winds. Overall, this work provides a new idea for the fabrication of advanced materials for direction-independent fog collection.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).