cu基电化学co2 -乙醇转化过程中金属-有机界面相的观察

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yan Shen, Nan Fang, Xinru Liu, Yu Ling, Yuming Su, Tian Tan, Feng Chen, He Lin, Boxuan Zhao, Jin Wang, Duanhui Si, Shunji Xie, Ye Wang, Da Zhou, Teng Zhang, Rong Cao, Cheng Wang
{"title":"cu基电化学co2 -乙醇转化过程中金属-有机界面相的观察","authors":"Yan Shen, Nan Fang, Xinru Liu, Yu Ling, Yuming Su, Tian Tan, Feng Chen, He Lin, Boxuan Zhao, Jin Wang, Duanhui Si, Shunji Xie, Ye Wang, Da Zhou, Teng Zhang, Rong Cao, Cheng Wang","doi":"10.1038/s41467-025-57221-x","DOIUrl":null,"url":null,"abstract":"<p>Interphases are critical in electrochemical systems, influencing performance by controlling ion transport and stability. This study explores a metal-organic interphase in the electrocatalytic reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) on Cu, extending the concept of interphases to CO<sub>2</sub> conversion. Investigating organic modifications on CuO<sub>x</sub>, we discover metal-organic interphases over 10 nm thick in highly ethanol-selective systems, contrary to the expected monolayer adsorption. Using an automated platform, 1080 CO<sub>2</sub>RR experiments with 180 molecular modifiers identify functional groups affecting selectivity for ethanol and multi-carbon (C<sub>2+</sub>) products. We find that these modifiers consistently produce metal-organic interphases on the Cu or CuO<sub>x</sub> surface. These interphases modulate Cu coordination, CO<sub>2</sub>RR intermediates, and interfacial water configuration, significantly improving electrocatalytic performance. Testing across 11 CuO<sub>x</sub>-based catalysts validates this approach, culminating in the development of two electrocatalysts that achieve ~80% faradaic efficiency for C<sub>2+</sub> products with ethanol partial current densities up to 328 and 507 mA cm<sup>−2</sup>. This study highlights the pivotal role of interphases in CO<sub>2</sub>RR, advancing CO<sub>2</sub> conversion technologies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"30 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of metal-organic interphase in Cu-based electrochemical CO2-to-ethanol conversion\",\"authors\":\"Yan Shen, Nan Fang, Xinru Liu, Yu Ling, Yuming Su, Tian Tan, Feng Chen, He Lin, Boxuan Zhao, Jin Wang, Duanhui Si, Shunji Xie, Ye Wang, Da Zhou, Teng Zhang, Rong Cao, Cheng Wang\",\"doi\":\"10.1038/s41467-025-57221-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interphases are critical in electrochemical systems, influencing performance by controlling ion transport and stability. This study explores a metal-organic interphase in the electrocatalytic reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) on Cu, extending the concept of interphases to CO<sub>2</sub> conversion. Investigating organic modifications on CuO<sub>x</sub>, we discover metal-organic interphases over 10 nm thick in highly ethanol-selective systems, contrary to the expected monolayer adsorption. Using an automated platform, 1080 CO<sub>2</sub>RR experiments with 180 molecular modifiers identify functional groups affecting selectivity for ethanol and multi-carbon (C<sub>2+</sub>) products. We find that these modifiers consistently produce metal-organic interphases on the Cu or CuO<sub>x</sub> surface. These interphases modulate Cu coordination, CO<sub>2</sub>RR intermediates, and interfacial water configuration, significantly improving electrocatalytic performance. Testing across 11 CuO<sub>x</sub>-based catalysts validates this approach, culminating in the development of two electrocatalysts that achieve ~80% faradaic efficiency for C<sub>2+</sub> products with ethanol partial current densities up to 328 and 507 mA cm<sup>−2</sup>. This study highlights the pivotal role of interphases in CO<sub>2</sub>RR, advancing CO<sub>2</sub> conversion technologies.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57221-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57221-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

界面相在电化学系统中是至关重要的,它通过控制离子传输和稳定性来影响电化学系统的性能。本研究探讨了铜电催化还原CO2 (CO2RR)过程中的金属-有机界面相,将界面相的概念扩展到CO2转化。在对CuOx进行有机修饰的研究中,我们发现在高度乙醇选择性体系中,厚度超过10纳米的金属-有机界面与预期的单层吸附相反。利用自动化平台,用180种分子修饰剂进行了1080次CO2RR实验,确定了影响乙醇和多碳(C2+)产物选择性的官能团。我们发现这些改性剂一致地在Cu或CuOx表面产生金属有机界面。这些界面相调节Cu配位、CO2RR中间体和界面水构型,显著提高电催化性能。对11种cuox基催化剂的测试验证了这种方法,最终开发出两种电催化剂,在乙醇分电流密度为328和507 mA cm - 2的C2+产品中实现了~80%的法拉第效率。本研究强调了界面相在CO2RR中的关键作用,推动了CO2转化技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observation of metal-organic interphase in Cu-based electrochemical CO2-to-ethanol conversion

Observation of metal-organic interphase in Cu-based electrochemical CO2-to-ethanol conversion

Interphases are critical in electrochemical systems, influencing performance by controlling ion transport and stability. This study explores a metal-organic interphase in the electrocatalytic reduction of CO2 (CO2RR) on Cu, extending the concept of interphases to CO2 conversion. Investigating organic modifications on CuOx, we discover metal-organic interphases over 10 nm thick in highly ethanol-selective systems, contrary to the expected monolayer adsorption. Using an automated platform, 1080 CO2RR experiments with 180 molecular modifiers identify functional groups affecting selectivity for ethanol and multi-carbon (C2+) products. We find that these modifiers consistently produce metal-organic interphases on the Cu or CuOx surface. These interphases modulate Cu coordination, CO2RR intermediates, and interfacial water configuration, significantly improving electrocatalytic performance. Testing across 11 CuOx-based catalysts validates this approach, culminating in the development of two electrocatalysts that achieve ~80% faradaic efficiency for C2+ products with ethanol partial current densities up to 328 and 507 mA cm−2. This study highlights the pivotal role of interphases in CO2RR, advancing CO2 conversion technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信