{"title":"掺镱元素对高强度 Mg-Sm-Gd(-Yb)-Zr 挤压合金微观结构和力学性能的影响","authors":"Nana Zhang, Xiaoya Chen, Quanan Li, Zeyu Zheng, Zheng Wu, Jiaqi Xie","doi":"10.1016/j.jma.2025.02.006","DOIUrl":null,"url":null,"abstract":"A high-strength magnesium alloy containing Yb was prepared through a simple hot extrusion process. The effect of Yb addition on dynamic precipitation, texture evolution, dynamic recrystallization mechanisms, deformation mechanisms, and strengthening mechanisms in as-extruded Mg-4Sm-3Gd(-2Yb)-0.5Zr (SGY0, SGY2) alloys was systematically investigated. The results indicated that the average grain size decreased from 4.17 µm to 1.48 µm with the addition of Yb. This extreme grain refinement greatly enhances the strength. The addition of Yb significantly facilitated the phase precipitation, but did not change the texture type. The non-dynamic recrystallized (unDRXed) grains exhibited a strong basal plane texture of <01<span><span style=\"\"><math><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 570.5 947.9\" width=\"1.325ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover></math></script></span>0> parallel to the extrusion direction (ED), while the dynamic recrystallized (DRXed) grains showed a weaker rare earth texture, characterized by <<span><span style=\"\"><math><mrow is=\"true\"><mover is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo is=\"true\" stretchy=\"true\">‾</mo></mover><mn is=\"true\">2</mn><mover is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo is=\"true\" stretchy=\"true\">‾</mo></mover><mn is=\"true\">2</mn></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 2142 947.9\" width=\"4.975ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\" transform=\"translate(35,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(570,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(1071,0)\"><g is=\"true\" transform=\"translate(35,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1641,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mover is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo stretchy=\"true\" is=\"true\">‾</mo></mover><mn is=\"true\">2</mn><mover is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo stretchy=\"true\" is=\"true\">‾</mo></mover><mn is=\"true\">2</mn></mrow></math></script></span>> // ED. Moreover, the as-extruded SGY0 and SGY2 alloys predominantly undergo continuous dynamic recrystallization (CDRX), and some DRXed grains exhibit a discontinuous dynamic recrystallization mechanism (DDRX). In addition, the addition of Yb facilitates the activation of non-basal plane slip. The dislocation types in the as-extruded SGY0 and SGY2 alloys include 〈a〉, 〈c〉 and 〈<em>c</em> + <em>a</em>〉 dislocations. However, the SGY2 alloy exhibits a relatively high dislocation density, which contributes to the enhancement of the strength. Extreme grain refinement and the dispersion of nanoscale second-phase particles are key factors in increasing the strength.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"185 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Yb element on microstructure and mechanical properties of high-strength Mg-Sm-Gd(-Yb)-Zr extruded alloys\",\"authors\":\"Nana Zhang, Xiaoya Chen, Quanan Li, Zeyu Zheng, Zheng Wu, Jiaqi Xie\",\"doi\":\"10.1016/j.jma.2025.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-strength magnesium alloy containing Yb was prepared through a simple hot extrusion process. The effect of Yb addition on dynamic precipitation, texture evolution, dynamic recrystallization mechanisms, deformation mechanisms, and strengthening mechanisms in as-extruded Mg-4Sm-3Gd(-2Yb)-0.5Zr (SGY0, SGY2) alloys was systematically investigated. The results indicated that the average grain size decreased from 4.17 µm to 1.48 µm with the addition of Yb. This extreme grain refinement greatly enhances the strength. The addition of Yb significantly facilitated the phase precipitation, but did not change the texture type. The non-dynamic recrystallized (unDRXed) grains exhibited a strong basal plane texture of <01<span><span style=\\\"\\\"><math><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">¯</mo></mover></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.202ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -846.5 570.5 947.9\\\" width=\\\"1.325ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\" transform=\\\"translate(35,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(0,198)\\\"><use x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use x=\\\"70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/mml\\\"><math><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">¯</mo></mover></math></script></span>0> parallel to the extrusion direction (ED), while the dynamic recrystallized (DRXed) grains showed a weaker rare earth texture, characterized by <<span><span style=\\\"\\\"><math><mrow is=\\\"true\\\"><mover is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn></mrow><mo is=\\\"true\\\" stretchy=\\\"true\\\">‾</mo></mover><mn is=\\\"true\\\">2</mn><mover is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn></mrow><mo is=\\\"true\\\" stretchy=\\\"true\\\">‾</mo></mover><mn is=\\\"true\\\">2</mn></mrow></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.202ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -846.5 2142 947.9\\\" width=\\\"4.975ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\" transform=\\\"translate(35,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(0,198)\\\"><use x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use x=\\\"70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(570,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1071,0)\\\"><g is=\\\"true\\\" transform=\\\"translate(35,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(0,198)\\\"><use x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use x=\\\"70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1641,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use></g></g></g></svg></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mover is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn></mrow><mo stretchy=\\\"true\\\" is=\\\"true\\\">‾</mo></mover><mn is=\\\"true\\\">2</mn><mover is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn></mrow><mo stretchy=\\\"true\\\" is=\\\"true\\\">‾</mo></mover><mn is=\\\"true\\\">2</mn></mrow></math></script></span>> // ED. Moreover, the as-extruded SGY0 and SGY2 alloys predominantly undergo continuous dynamic recrystallization (CDRX), and some DRXed grains exhibit a discontinuous dynamic recrystallization mechanism (DDRX). In addition, the addition of Yb facilitates the activation of non-basal plane slip. The dislocation types in the as-extruded SGY0 and SGY2 alloys include 〈a〉, 〈c〉 and 〈<em>c</em> + <em>a</em>〉 dislocations. However, the SGY2 alloy exhibits a relatively high dislocation density, which contributes to the enhancement of the strength. Extreme grain refinement and the dispersion of nanoscale second-phase particles are key factors in increasing the strength.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.02.006\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.02.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effects of Yb element on microstructure and mechanical properties of high-strength Mg-Sm-Gd(-Yb)-Zr extruded alloys
A high-strength magnesium alloy containing Yb was prepared through a simple hot extrusion process. The effect of Yb addition on dynamic precipitation, texture evolution, dynamic recrystallization mechanisms, deformation mechanisms, and strengthening mechanisms in as-extruded Mg-4Sm-3Gd(-2Yb)-0.5Zr (SGY0, SGY2) alloys was systematically investigated. The results indicated that the average grain size decreased from 4.17 µm to 1.48 µm with the addition of Yb. This extreme grain refinement greatly enhances the strength. The addition of Yb significantly facilitated the phase precipitation, but did not change the texture type. The non-dynamic recrystallized (unDRXed) grains exhibited a strong basal plane texture of <010> parallel to the extrusion direction (ED), while the dynamic recrystallized (DRXed) grains showed a weaker rare earth texture, characterized by <> // ED. Moreover, the as-extruded SGY0 and SGY2 alloys predominantly undergo continuous dynamic recrystallization (CDRX), and some DRXed grains exhibit a discontinuous dynamic recrystallization mechanism (DDRX). In addition, the addition of Yb facilitates the activation of non-basal plane slip. The dislocation types in the as-extruded SGY0 and SGY2 alloys include 〈a〉, 〈c〉 and 〈c + a〉 dislocations. However, the SGY2 alloy exhibits a relatively high dislocation density, which contributes to the enhancement of the strength. Extreme grain refinement and the dispersion of nanoscale second-phase particles are key factors in increasing the strength.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.