靶向TRPM4通道治疗神经疾病:机遇与挑战

IF 3.9 3区 医学 Q1 CLINICAL NEUROLOGY
Neuroscientist Pub Date : 2025-10-01 Epub Date: 2025-02-26 DOI:10.1177/10738584251318979
Gayathri Rajamanickam, Zhenyu Hu, Ping Liao
{"title":"靶向TRPM4通道治疗神经疾病:机遇与挑战","authors":"Gayathri Rajamanickam, Zhenyu Hu, Ping Liao","doi":"10.1177/10738584251318979","DOIUrl":null,"url":null,"abstract":"<p><p>As a monovalent cation channel, the transient receptor potential melastatin 4 (TRPM4) channel is a unique member of the transient receptor potential family. Abnormal TRPM4 activity has been identified in various neurologic disorders, such as stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, amyotrophic lateral sclerosis, pathologic pain, and epilepsy. Following brain hypoxia/ischemia and inflammation, TRPM4 up-regulation and enhanced activity contribute to the cell death of neurons, vascular endothelial cells, and astrocytes. Enhanced ionic influx via TRPM4 leads to cell volume increase and oncosis. Depolarization of membrane potential following TRPM4 activation and interaction between TRPM4 and <i>N</i>-methyl-d-aspartate receptors exacerbate excitotoxicity during hypoxia. Importantly, TRPM4 expression and activity remain low in healthy neurons, making it an ideal drug target. Current approaches to inhibit or modulate the TRPM4 channel have various limitations that hamper the interpretation of TRPM4 physiology in the nervous system and potentially hinder their translation into therapy. In this review, we discuss the pathophysiologic roles of TRPM4 and the different inhibitors that modulate TRPM4 activity for potential treatment of neurologic diseases.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"464-482"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting the TRPM4 Channel for Neurologic Diseases: Opportunity and Challenge.\",\"authors\":\"Gayathri Rajamanickam, Zhenyu Hu, Ping Liao\",\"doi\":\"10.1177/10738584251318979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a monovalent cation channel, the transient receptor potential melastatin 4 (TRPM4) channel is a unique member of the transient receptor potential family. Abnormal TRPM4 activity has been identified in various neurologic disorders, such as stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, amyotrophic lateral sclerosis, pathologic pain, and epilepsy. Following brain hypoxia/ischemia and inflammation, TRPM4 up-regulation and enhanced activity contribute to the cell death of neurons, vascular endothelial cells, and astrocytes. Enhanced ionic influx via TRPM4 leads to cell volume increase and oncosis. Depolarization of membrane potential following TRPM4 activation and interaction between TRPM4 and <i>N</i>-methyl-d-aspartate receptors exacerbate excitotoxicity during hypoxia. Importantly, TRPM4 expression and activity remain low in healthy neurons, making it an ideal drug target. Current approaches to inhibit or modulate the TRPM4 channel have various limitations that hamper the interpretation of TRPM4 physiology in the nervous system and potentially hinder their translation into therapy. In this review, we discuss the pathophysiologic roles of TRPM4 and the different inhibitors that modulate TRPM4 activity for potential treatment of neurologic diseases.</p>\",\"PeriodicalId\":49753,\"journal\":{\"name\":\"Neuroscientist\",\"volume\":\" \",\"pages\":\"464-482\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscientist\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10738584251318979\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584251318979","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

暂态受体电位美拉他汀4 (TRPM4)通道作为一种单价阳离子通道,是暂态受体电位家族中独特的成员。异常TRPM4活性已在各种神经系统疾病中被发现,如中风、脊髓损伤、创伤性脑损伤、多发性硬化症、肌萎缩侧索硬化症、病理性疼痛和癫痫。脑缺氧/缺血和炎症后,TRPM4上调和活性增强导致神经元、血管内皮细胞和星形胶质细胞死亡。通过TRPM4增强离子内流导致细胞体积增大和肿瘤。缺氧时,TRPM4激活后的膜电位去极化以及TRPM4与n -甲基-d-天冬氨酸受体的相互作用加剧了兴奋性毒性。重要的是,TRPM4在健康神经元中的表达和活性仍然很低,使其成为理想的药物靶点。目前抑制或调节TRPM4通道的方法存在各种局限性,这妨碍了对神经系统中TRPM4生理学的解释,并可能阻碍其转化为治疗。在这篇综述中,我们讨论了TRPM4的病理生理作用以及调节TRPM4活性的不同抑制剂对神经系统疾病的潜在治疗作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting the TRPM4 Channel for Neurologic Diseases: Opportunity and Challenge.

As a monovalent cation channel, the transient receptor potential melastatin 4 (TRPM4) channel is a unique member of the transient receptor potential family. Abnormal TRPM4 activity has been identified in various neurologic disorders, such as stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, amyotrophic lateral sclerosis, pathologic pain, and epilepsy. Following brain hypoxia/ischemia and inflammation, TRPM4 up-regulation and enhanced activity contribute to the cell death of neurons, vascular endothelial cells, and astrocytes. Enhanced ionic influx via TRPM4 leads to cell volume increase and oncosis. Depolarization of membrane potential following TRPM4 activation and interaction between TRPM4 and N-methyl-d-aspartate receptors exacerbate excitotoxicity during hypoxia. Importantly, TRPM4 expression and activity remain low in healthy neurons, making it an ideal drug target. Current approaches to inhibit or modulate the TRPM4 channel have various limitations that hamper the interpretation of TRPM4 physiology in the nervous system and potentially hinder their translation into therapy. In this review, we discuss the pathophysiologic roles of TRPM4 and the different inhibitors that modulate TRPM4 activity for potential treatment of neurologic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscientist
Neuroscientist 医学-临床神经学
CiteScore
11.50
自引率
0.00%
发文量
68
期刊介绍: Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信