基于动态注意匹配和图注意网络的联合事件提取模型。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiajun Cheng, Wenjie Liu, Zhifan Wang, Zhijie Ren, Xingwen Li
{"title":"基于动态注意匹配和图注意网络的联合事件提取模型。","authors":"Jiajun Cheng, Wenjie Liu, Zhifan Wang, Zhijie Ren, Xingwen Li","doi":"10.1038/s41598-025-91501-2","DOIUrl":null,"url":null,"abstract":"<p><p>Event extraction is one of the important processes in event knowledge graph construction. However, extant event extraction models are confronted with the challenge of handling vague and unfamiliar event trigger words as well as noise that is prevalent in text. To address this issue, this study proposes a joint event extraction model that leverages dynamic attention matching and graph attention network. Specifically, the dynamic attention matching mechanism is employed to identify event nodes that contain text event structure features and to integrate event structure knowledge for constructing event pattern subgraph that correspond to the text, thereby resolving the problem of ambiguous and unknown trigger word classification. To better discriminate between semantic information and event structure information and to mitigate the impact of noise in text, we introduce a graph attention network that integrates event structure features for aggregating feature embedding of node neighbors. Experiment results on the ACE2005 dataset demonstrate that our proposed model attains competitive performance in comparison to existing methods.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6900"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint event extraction model based on dynamic attention matching and graph attention networks.\",\"authors\":\"Jiajun Cheng, Wenjie Liu, Zhifan Wang, Zhijie Ren, Xingwen Li\",\"doi\":\"10.1038/s41598-025-91501-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Event extraction is one of the important processes in event knowledge graph construction. However, extant event extraction models are confronted with the challenge of handling vague and unfamiliar event trigger words as well as noise that is prevalent in text. To address this issue, this study proposes a joint event extraction model that leverages dynamic attention matching and graph attention network. Specifically, the dynamic attention matching mechanism is employed to identify event nodes that contain text event structure features and to integrate event structure knowledge for constructing event pattern subgraph that correspond to the text, thereby resolving the problem of ambiguous and unknown trigger word classification. To better discriminate between semantic information and event structure information and to mitigate the impact of noise in text, we introduce a graph attention network that integrates event structure features for aggregating feature embedding of node neighbors. Experiment results on the ACE2005 dataset demonstrate that our proposed model attains competitive performance in comparison to existing methods.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"6900\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91501-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91501-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

事件提取是构建事件知识图的重要过程之一。然而,现有的事件提取模型面临着处理模糊和不熟悉的事件触发词以及文本中普遍存在的噪声的挑战。为了解决这一问题,本研究提出了一种利用动态注意匹配和图注意网络的联合事件提取模型。具体而言,采用动态关注匹配机制识别包含文本事件结构特征的事件节点,并整合事件结构知识,构建与文本对应的事件模式子图,从而解决模糊未知触发词分类问题。为了更好地区分语义信息和事件结构信息,并减轻文本中噪声的影响,我们引入了一个集成事件结构特征的图关注网络,用于节点邻居的聚合特征嵌入。在ACE2005数据集上的实验结果表明,与现有方法相比,我们提出的模型具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Joint event extraction model based on dynamic attention matching and graph attention networks.

Joint event extraction model based on dynamic attention matching and graph attention networks.

Joint event extraction model based on dynamic attention matching and graph attention networks.

Joint event extraction model based on dynamic attention matching and graph attention networks.

Event extraction is one of the important processes in event knowledge graph construction. However, extant event extraction models are confronted with the challenge of handling vague and unfamiliar event trigger words as well as noise that is prevalent in text. To address this issue, this study proposes a joint event extraction model that leverages dynamic attention matching and graph attention network. Specifically, the dynamic attention matching mechanism is employed to identify event nodes that contain text event structure features and to integrate event structure knowledge for constructing event pattern subgraph that correspond to the text, thereby resolving the problem of ambiguous and unknown trigger word classification. To better discriminate between semantic information and event structure information and to mitigate the impact of noise in text, we introduce a graph attention network that integrates event structure features for aggregating feature embedding of node neighbors. Experiment results on the ACE2005 dataset demonstrate that our proposed model attains competitive performance in comparison to existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信