快速和高灵敏度筛选妊娠并发症分析循环胎盘细胞外囊泡。

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI:10.1126/sciadv.adr4074
Carlos Palma, Mostafa Kamal Masud, Dominic Guanzon, Andrew Lai, Melissa Razo, Angela Nakahara, Soumyalekshmi Nair, Alexis Salas-Burgos, Md Shahriar A Hossain, Flavio Carrion, Gregory Duncombe, H David McIntyre, Aase Handberg, Sherri Longo, Yusuke Yamauchi, Carlos Salomon
{"title":"快速和高灵敏度筛选妊娠并发症分析循环胎盘细胞外囊泡。","authors":"Carlos Palma, Mostafa Kamal Masud, Dominic Guanzon, Andrew Lai, Melissa Razo, Angela Nakahara, Soumyalekshmi Nair, Alexis Salas-Burgos, Md Shahriar A Hossain, Flavio Carrion, Gregory Duncombe, H David McIntyre, Aase Handberg, Sherri Longo, Yusuke Yamauchi, Carlos Salomon","doi":"10.1126/sciadv.adr4074","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we developed a specific, rapid sensor to quantify placental extracellular vesicle (EV) protein biomarkers of early pregnancy complications. A distinct tetraspanin CD9 and placental alkaline phosphatase (PLAP) expression pattern was observed via targeted multiple reaction monitoring of EVs from maternal plasma collected before 18 weeks of gestation. A classification model was developed using training and validation patient sets, distinguishing between individuals at high risk of developing complications from those with normal pregnancies, achieving 80% sensitivity, 90% specificity, 89% positive predictive value (PPV), and 82% negative predictive value (NPV). Superparamagnetic nanoflowers that captured target EVs (CD9<sup>+</sup>/PLAP<sup>+</sup>) were used to construct a 4-flex glass strip nanozymatic readout system. The sensor analyzes plasma for EVs, identifying gestational diabetes mellitus risk with a 95% combined sensitivity, 100% specificity, 100% PPV, and 96% NPV. This nanoplatform identifies individuals at risk of developing pregnancy complications with a >90% classification accuracy, exhibiting potential for clinical applications.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eadr4074"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864196/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid and high-sensitivity screening of pregnancy complications by profiling circulating placental extracellular vesicles.\",\"authors\":\"Carlos Palma, Mostafa Kamal Masud, Dominic Guanzon, Andrew Lai, Melissa Razo, Angela Nakahara, Soumyalekshmi Nair, Alexis Salas-Burgos, Md Shahriar A Hossain, Flavio Carrion, Gregory Duncombe, H David McIntyre, Aase Handberg, Sherri Longo, Yusuke Yamauchi, Carlos Salomon\",\"doi\":\"10.1126/sciadv.adr4074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we developed a specific, rapid sensor to quantify placental extracellular vesicle (EV) protein biomarkers of early pregnancy complications. A distinct tetraspanin CD9 and placental alkaline phosphatase (PLAP) expression pattern was observed via targeted multiple reaction monitoring of EVs from maternal plasma collected before 18 weeks of gestation. A classification model was developed using training and validation patient sets, distinguishing between individuals at high risk of developing complications from those with normal pregnancies, achieving 80% sensitivity, 90% specificity, 89% positive predictive value (PPV), and 82% negative predictive value (NPV). Superparamagnetic nanoflowers that captured target EVs (CD9<sup>+</sup>/PLAP<sup>+</sup>) were used to construct a 4-flex glass strip nanozymatic readout system. The sensor analyzes plasma for EVs, identifying gestational diabetes mellitus risk with a 95% combined sensitivity, 100% specificity, 100% PPV, and 96% NPV. This nanoplatform identifies individuals at risk of developing pregnancy complications with a >90% classification accuracy, exhibiting potential for clinical applications.</p>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 9\",\"pages\":\"eadr4074\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adr4074\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr4074","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们开发了一种特定的,快速的传感器来量化胎盘细胞外囊泡(EV)蛋白的早期妊娠并发症的生物标志物。通过对妊娠18周前母体血浆中EVs的靶向多反应监测,观察到不同的tetraspanin CD9和胎盘碱性磷酸酶(PLAP)表达模式。使用训练和验证患者集建立了一个分类模型,将发生并发症的高风险个体与正常妊娠的个体区分开来,达到80%的敏感性,90%的特异性,89%的阳性预测值(PPV)和82%的阴性预测值(NPV)。利用捕获目标ev (CD9+/PLAP+)的超顺磁纳米花构建了四柔性玻璃条纳米酶读系统。该传感器分析血浆EVs,以95%的综合灵敏度、100%的特异性、100%的PPV和96%的NPV识别妊娠糖尿病风险。该纳米平台可识别有妊娠并发症风险的个体,分类准确率达90%,具有临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid and high-sensitivity screening of pregnancy complications by profiling circulating placental extracellular vesicles.

Rapid and high-sensitivity screening of pregnancy complications by profiling circulating placental extracellular vesicles.

Rapid and high-sensitivity screening of pregnancy complications by profiling circulating placental extracellular vesicles.

Rapid and high-sensitivity screening of pregnancy complications by profiling circulating placental extracellular vesicles.

Herein, we developed a specific, rapid sensor to quantify placental extracellular vesicle (EV) protein biomarkers of early pregnancy complications. A distinct tetraspanin CD9 and placental alkaline phosphatase (PLAP) expression pattern was observed via targeted multiple reaction monitoring of EVs from maternal plasma collected before 18 weeks of gestation. A classification model was developed using training and validation patient sets, distinguishing between individuals at high risk of developing complications from those with normal pregnancies, achieving 80% sensitivity, 90% specificity, 89% positive predictive value (PPV), and 82% negative predictive value (NPV). Superparamagnetic nanoflowers that captured target EVs (CD9+/PLAP+) were used to construct a 4-flex glass strip nanozymatic readout system. The sensor analyzes plasma for EVs, identifying gestational diabetes mellitus risk with a 95% combined sensitivity, 100% specificity, 100% PPV, and 96% NPV. This nanoplatform identifies individuals at risk of developing pregnancy complications with a >90% classification accuracy, exhibiting potential for clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信