LapEx:一个新的多模态数据集,用于腹腔镜手术的上下文识别和实践评估。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Arthur Derathé, Fabian Reche, Sylvain Guy, Katia Charrière, Bertrand Trilling, Pierre Jannin, Alexandre Moreau-Gaudry, Bernard Gibaud, Sandrine Voros
{"title":"LapEx:一个新的多模态数据集,用于腹腔镜手术的上下文识别和实践评估。","authors":"Arthur Derathé, Fabian Reche, Sylvain Guy, Katia Charrière, Bertrand Trilling, Pierre Jannin, Alexandre Moreau-Gaudry, Bernard Gibaud, Sandrine Voros","doi":"10.1038/s41597-025-04588-7","DOIUrl":null,"url":null,"abstract":"<p><p>In Surgical Data Science (SDS), there is an increasing demand for large, realistic annotated datasets to facilitate the development of machine learning techniques. However, in laparoscopic surgery, most publicly available datasets focus on low-granularity procedural annotations (such as phases or steps) and image segmentation of instruments or specific organs, often using animal models that lack clinical realism. Furthermore, annotation variability is seldom evaluated. In this work, we compiled 30 sleeve gastrectomy procedures and performed three levels of annotations for a specific step of this procedure (the fundus dissection): a procedural annotation of fine-grained activities, a semantic segmentation of the laparoscopic images, and the assessment of a surgical skill, specifically the quality of exposition of the surgical scene. We also conducted a comprehensive annotation variability analysis, highlighting the complexity of these tasks and providing a baseline for evaluating machine learning models. The dataset is publicly available and serves as a valuable resource for advancing SDS research.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"342"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865446/pdf/","citationCount":"0","resultStr":"{\"title\":\"LapEx: A new multimodal dataset for context recognition and practice assessment in laparoscopic surgery.\",\"authors\":\"Arthur Derathé, Fabian Reche, Sylvain Guy, Katia Charrière, Bertrand Trilling, Pierre Jannin, Alexandre Moreau-Gaudry, Bernard Gibaud, Sandrine Voros\",\"doi\":\"10.1038/s41597-025-04588-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Surgical Data Science (SDS), there is an increasing demand for large, realistic annotated datasets to facilitate the development of machine learning techniques. However, in laparoscopic surgery, most publicly available datasets focus on low-granularity procedural annotations (such as phases or steps) and image segmentation of instruments or specific organs, often using animal models that lack clinical realism. Furthermore, annotation variability is seldom evaluated. In this work, we compiled 30 sleeve gastrectomy procedures and performed three levels of annotations for a specific step of this procedure (the fundus dissection): a procedural annotation of fine-grained activities, a semantic segmentation of the laparoscopic images, and the assessment of a surgical skill, specifically the quality of exposition of the surgical scene. We also conducted a comprehensive annotation variability analysis, highlighting the complexity of these tasks and providing a baseline for evaluating machine learning models. The dataset is publicly available and serves as a valuable resource for advancing SDS research.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"342\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04588-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04588-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在外科数据科学(SDS)中,对大型,现实的注释数据集的需求不断增加,以促进机器学习技术的发展。然而,在腹腔镜手术中,大多数公开可用的数据集中于低粒度的程序注释(如阶段或步骤)和仪器或特定器官的图像分割,通常使用缺乏临床真实感的动物模型。此外,注释可变性很少被评估。在这项工作中,我们编制了30个袖胃切除术程序,并对该程序的特定步骤(眼底解剖)进行了三个级别的注释:细粒度活动的程序注释,腹腔镜图像的语义分割,以及手术技能的评估,特别是手术场景的展示质量。我们还进行了全面的注释可变性分析,突出了这些任务的复杂性,并为评估机器学习模型提供了基线。该数据集是公开可用的,是推进SDS研究的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LapEx: A new multimodal dataset for context recognition and practice assessment in laparoscopic surgery.

LapEx: A new multimodal dataset for context recognition and practice assessment in laparoscopic surgery.

LapEx: A new multimodal dataset for context recognition and practice assessment in laparoscopic surgery.

LapEx: A new multimodal dataset for context recognition and practice assessment in laparoscopic surgery.

In Surgical Data Science (SDS), there is an increasing demand for large, realistic annotated datasets to facilitate the development of machine learning techniques. However, in laparoscopic surgery, most publicly available datasets focus on low-granularity procedural annotations (such as phases or steps) and image segmentation of instruments or specific organs, often using animal models that lack clinical realism. Furthermore, annotation variability is seldom evaluated. In this work, we compiled 30 sleeve gastrectomy procedures and performed three levels of annotations for a specific step of this procedure (the fundus dissection): a procedural annotation of fine-grained activities, a semantic segmentation of the laparoscopic images, and the assessment of a surgical skill, specifically the quality of exposition of the surgical scene. We also conducted a comprehensive annotation variability analysis, highlighting the complexity of these tasks and providing a baseline for evaluating machine learning models. The dataset is publicly available and serves as a valuable resource for advancing SDS research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信