基于精神疾病患者神经影像学结果数据驱动分析的脑室增大和认知障碍患者新分类建议

IF 2 Q3 NEUROSCIENCES
Yuka Yasuda, Satsuki Ito, Junya Matsumoto, Naohiro Okada, Toshiaki Onitsuka, Masashi Ikeda, Itaru Kushima, Chika Sumiyoshi, Masaki Fukunaga, Kiyotaka Nemoto, Kenichiro Miura, Naoki Hashimoto, Kazutaka Ohi, Tsutomu Takahashi, Daiki Sasabayashi, Michihiko Koeda, Hidenaga Yamamori, Michiko Fujimoto, Harumasa Takano, Naomi Hasegawa, Hisashi Narita, Maeri Yamamoto, Khin Khin Tha, Masataka Kikuchi, Toshiharu Kamishikiryo, Eri Itai, Yoshiro Okubo, Amane Tateno, Motoaki Nakamura, Manabu Kubota, Hiroyuki Igarashi, Yoji Hirano, Go Okada, Jun Miyata, Shusuke Numata, Osamu Abe, Reiji Yoshimura, Shin Nakagawa, Hidenori Yamasue, Norio Ozaki, Kiyoto Kasai, Ryota Hashimoto
{"title":"基于精神疾病患者神经影像学结果数据驱动分析的脑室增大和认知障碍患者新分类建议","authors":"Yuka Yasuda, Satsuki Ito, Junya Matsumoto, Naohiro Okada, Toshiaki Onitsuka, Masashi Ikeda, Itaru Kushima, Chika Sumiyoshi, Masaki Fukunaga, Kiyotaka Nemoto, Kenichiro Miura, Naoki Hashimoto, Kazutaka Ohi, Tsutomu Takahashi, Daiki Sasabayashi, Michihiko Koeda, Hidenaga Yamamori, Michiko Fujimoto, Harumasa Takano, Naomi Hasegawa, Hisashi Narita, Maeri Yamamoto, Khin Khin Tha, Masataka Kikuchi, Toshiharu Kamishikiryo, Eri Itai, Yoshiro Okubo, Amane Tateno, Motoaki Nakamura, Manabu Kubota, Hiroyuki Igarashi, Yoji Hirano, Go Okada, Jun Miyata, Shusuke Numata, Osamu Abe, Reiji Yoshimura, Shin Nakagawa, Hidenori Yamasue, Norio Ozaki, Kiyoto Kasai, Ryota Hashimoto","doi":"10.1002/npr2.70010","DOIUrl":null,"url":null,"abstract":"<p><p>One of the challenges in diagnosing psychiatric disorders is that the results of biological and neuroscience research are not reflected in the diagnostic criteria. Thus, data-driven analyses incorporating biological and cross-disease perspectives, regardless of the diagnostic category, have recently been proposed. A data-driven clustering study based on subcortical volumes in 5604 subjects classified into four brain biotypes associated with cognitive/social functioning. Among the four brain biotypes identified in controls and patients with schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, and other psychiatric disorders, we further analyzed the brain biotype 1 subjects, those with an extremely small limbic region, for clinical utility. We found that the representative feature of brain biotype 1 is enlarged lateral ventricles. An enlarged ventricle, defined by an average z-score of left and right lateral ventricle volumes > 3, had a sensitivity of 99.1% and a specificity of 98.1% for discriminating brain biotype 1. However, the presence of an enlarged ventricle was not sufficient to classify patient subgroups, as 1% of the controls also had enlarged ventricles. Reclassification of patients with enlarged ventricles according to cognitive impairment resulted in a stratified subgroup that included patients with a high proportion of schizophrenia diagnoses, electroencephalography abnormalities, and rare pathological genetic copy number variations. Data-driven clustering analysis of neuroimaging data revealed subgroups with enlarged ventricles and cognitive impairment. This subgroup could be a new diagnostic candidate for psychiatric disorders. This concept and strategy may be useful for identifying biologically defined psychiatric disorders in the future.</p>","PeriodicalId":19137,"journal":{"name":"Neuropsychopharmacology Reports","volume":"45 1","pages":"e70010"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proposal for a Novel Classification of Patients With Enlarged Ventricles and Cognitive Impairment Based on Data-Driven Analysis of Neuroimaging Results in Patients With Psychiatric Disorders.\",\"authors\":\"Yuka Yasuda, Satsuki Ito, Junya Matsumoto, Naohiro Okada, Toshiaki Onitsuka, Masashi Ikeda, Itaru Kushima, Chika Sumiyoshi, Masaki Fukunaga, Kiyotaka Nemoto, Kenichiro Miura, Naoki Hashimoto, Kazutaka Ohi, Tsutomu Takahashi, Daiki Sasabayashi, Michihiko Koeda, Hidenaga Yamamori, Michiko Fujimoto, Harumasa Takano, Naomi Hasegawa, Hisashi Narita, Maeri Yamamoto, Khin Khin Tha, Masataka Kikuchi, Toshiharu Kamishikiryo, Eri Itai, Yoshiro Okubo, Amane Tateno, Motoaki Nakamura, Manabu Kubota, Hiroyuki Igarashi, Yoji Hirano, Go Okada, Jun Miyata, Shusuke Numata, Osamu Abe, Reiji Yoshimura, Shin Nakagawa, Hidenori Yamasue, Norio Ozaki, Kiyoto Kasai, Ryota Hashimoto\",\"doi\":\"10.1002/npr2.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the challenges in diagnosing psychiatric disorders is that the results of biological and neuroscience research are not reflected in the diagnostic criteria. Thus, data-driven analyses incorporating biological and cross-disease perspectives, regardless of the diagnostic category, have recently been proposed. A data-driven clustering study based on subcortical volumes in 5604 subjects classified into four brain biotypes associated with cognitive/social functioning. Among the four brain biotypes identified in controls and patients with schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, and other psychiatric disorders, we further analyzed the brain biotype 1 subjects, those with an extremely small limbic region, for clinical utility. We found that the representative feature of brain biotype 1 is enlarged lateral ventricles. An enlarged ventricle, defined by an average z-score of left and right lateral ventricle volumes > 3, had a sensitivity of 99.1% and a specificity of 98.1% for discriminating brain biotype 1. However, the presence of an enlarged ventricle was not sufficient to classify patient subgroups, as 1% of the controls also had enlarged ventricles. Reclassification of patients with enlarged ventricles according to cognitive impairment resulted in a stratified subgroup that included patients with a high proportion of schizophrenia diagnoses, electroencephalography abnormalities, and rare pathological genetic copy number variations. Data-driven clustering analysis of neuroimaging data revealed subgroups with enlarged ventricles and cognitive impairment. This subgroup could be a new diagnostic candidate for psychiatric disorders. This concept and strategy may be useful for identifying biologically defined psychiatric disorders in the future.</p>\",\"PeriodicalId\":19137,\"journal\":{\"name\":\"Neuropsychopharmacology Reports\",\"volume\":\"45 1\",\"pages\":\"e70010\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychopharmacology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/npr2.70010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/npr2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

诊断精神疾病的挑战之一是生物学和神经科学的研究结果没有反映在诊断标准中。因此,最近提出了结合生物学和跨疾病观点的数据驱动分析,而不考虑诊断类别。一项基于5604名受试者皮质下体积的数据驱动聚类研究,这些受试者被划分为与认知/社会功能相关的四种脑生物型。在对照组和精神分裂症、双相情感障碍、重度抑郁症、自闭症谱系障碍和其他精神疾病患者中确定的四种脑生物型中,我们进一步分析了脑生物型1受试者,即边缘区域极小的受试者,以供临床使用。我们发现脑生物型1的代表性特征是侧脑室增大。通过左右侧脑室容积的平均z分数(z-score)来定义的增大脑室,在区分脑生物型1方面的敏感性为99.1%,特异性为98.1%。然而,心室增大的存在不足以将患者分类为亚组,因为1%的对照组也有心室增大。根据认知障碍对脑室增大患者进行重新分类,形成了一个分层亚组,其中包括精神分裂症诊断比例高、脑电图异常和罕见病理性遗传拷贝数变异的患者。数据驱动的神经影像学数据聚类分析显示,亚组有脑室增大和认知障碍。这一亚群可能成为精神疾病的新诊断候选者。这一概念和策略将来可能对识别生物学上定义的精神疾病有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal for a Novel Classification of Patients With Enlarged Ventricles and Cognitive Impairment Based on Data-Driven Analysis of Neuroimaging Results in Patients With Psychiatric Disorders.

One of the challenges in diagnosing psychiatric disorders is that the results of biological and neuroscience research are not reflected in the diagnostic criteria. Thus, data-driven analyses incorporating biological and cross-disease perspectives, regardless of the diagnostic category, have recently been proposed. A data-driven clustering study based on subcortical volumes in 5604 subjects classified into four brain biotypes associated with cognitive/social functioning. Among the four brain biotypes identified in controls and patients with schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, and other psychiatric disorders, we further analyzed the brain biotype 1 subjects, those with an extremely small limbic region, for clinical utility. We found that the representative feature of brain biotype 1 is enlarged lateral ventricles. An enlarged ventricle, defined by an average z-score of left and right lateral ventricle volumes > 3, had a sensitivity of 99.1% and a specificity of 98.1% for discriminating brain biotype 1. However, the presence of an enlarged ventricle was not sufficient to classify patient subgroups, as 1% of the controls also had enlarged ventricles. Reclassification of patients with enlarged ventricles according to cognitive impairment resulted in a stratified subgroup that included patients with a high proportion of schizophrenia diagnoses, electroencephalography abnormalities, and rare pathological genetic copy number variations. Data-driven clustering analysis of neuroimaging data revealed subgroups with enlarged ventricles and cognitive impairment. This subgroup could be a new diagnostic candidate for psychiatric disorders. This concept and strategy may be useful for identifying biologically defined psychiatric disorders in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropsychopharmacology Reports
Neuropsychopharmacology Reports Psychology-Clinical Psychology
CiteScore
3.60
自引率
4.00%
发文量
75
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信