基于通道注意机制的SEGDC-UNet电子显微镜图像分割算法研究。

IF 1.9 4区 工程技术 Q3 MICROSCOPY
Yue Li, Qian Zhao, Haijing Sun, Yichuan Shao, Yong Wang
{"title":"基于通道注意机制的SEGDC-UNet电子显微镜图像分割算法研究。","authors":"Yue Li,&nbsp;Qian Zhao,&nbsp;Haijing Sun,&nbsp;Yichuan Shao,&nbsp;Yong Wang","doi":"10.1111/jmi.13394","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose SEGDC-UNet, a segmentation algorithm for electron microscope (EM) images based on the channel attention mechanism. This algorithm integrates the channel attention mechanism and the GELU activation function into the DC-UNet network. By leveraging global information to selectively enhance primary features and suppress less relevant ones, the channel attention mechanism improves focus on important image channels and characteristics. Additionally, the GELU activation function enhances training performance and convergence speed. To evaluate its effectiveness, we compar SEGDC-UNet with six major lightweight image segmentation models on EMPS-Augmented electron microscopy image dataset. Experimental results demonstrate that the SEGDC-UNet model achieves higher Dice coefficient, IoU, Pixel Accuracy and Recall in electron microscopy image segmentation.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"298 3","pages":"293-304"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the SEGDC-UNet electron microscope image segmentation algorithm based on channel attention mechanism\",\"authors\":\"Yue Li,&nbsp;Qian Zhao,&nbsp;Haijing Sun,&nbsp;Yichuan Shao,&nbsp;Yong Wang\",\"doi\":\"10.1111/jmi.13394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose SEGDC-UNet, a segmentation algorithm for electron microscope (EM) images based on the channel attention mechanism. This algorithm integrates the channel attention mechanism and the GELU activation function into the DC-UNet network. By leveraging global information to selectively enhance primary features and suppress less relevant ones, the channel attention mechanism improves focus on important image channels and characteristics. Additionally, the GELU activation function enhances training performance and convergence speed. To evaluate its effectiveness, we compar SEGDC-UNet with six major lightweight image segmentation models on EMPS-Augmented electron microscopy image dataset. Experimental results demonstrate that the SEGDC-UNet model achieves higher Dice coefficient, IoU, Pixel Accuracy and Recall in electron microscopy image segmentation.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"298 3\",\"pages\":\"293-304\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13394\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13394","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于通道注意机制的电子显微镜图像分割算法SEGDC-UNet。该算法将信道注意机制和GELU激活函数集成到DC-UNet网络中。通道注意机制通过利用全局信息选择性地增强主要特征并抑制不相关特征,提高了对重要图像通道和特征的关注。此外,GELU激活函数提高了训练性能和收敛速度。为了评估其有效性,我们将SEGDC-UNet与emps增强电子显微镜图像数据集上的六种主要轻量级图像分割模型进行了比较。实验结果表明,SEGDC-UNet模型在电子显微镜图像分割中具有较高的Dice系数、IoU、像素精度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the SEGDC-UNet electron microscope image segmentation algorithm based on channel attention mechanism

In this paper, we propose SEGDC-UNet, a segmentation algorithm for electron microscope (EM) images based on the channel attention mechanism. This algorithm integrates the channel attention mechanism and the GELU activation function into the DC-UNet network. By leveraging global information to selectively enhance primary features and suppress less relevant ones, the channel attention mechanism improves focus on important image channels and characteristics. Additionally, the GELU activation function enhances training performance and convergence speed. To evaluate its effectiveness, we compar SEGDC-UNet with six major lightweight image segmentation models on EMPS-Augmented electron microscopy image dataset. Experimental results demonstrate that the SEGDC-UNet model achieves higher Dice coefficient, IoU, Pixel Accuracy and Recall in electron microscopy image segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信