Syed Muhammad Farhan Ali Shah, Syed Makhdoom Hussain, Shafaqat Ali, Pallab K Sarker, Khalid A Al-Ghanim, Sunakbaeva Dilara
{"title":"添加胡椒提取物改善镍诱导的鲢鱼应激。","authors":"Syed Muhammad Farhan Ali Shah, Syed Makhdoom Hussain, Shafaqat Ali, Pallab K Sarker, Khalid A Al-Ghanim, Sunakbaeva Dilara","doi":"10.1007/s12011-025-04560-x","DOIUrl":null,"url":null,"abstract":"<p><p>The current study examined the damaging implications of nickel (Ni) toxicity on body composition, growth responses, histology and hematology of Hypophthalmichthys molitrix, as well as the potential mitigating effects of Piper nigrum extract. For this purpose, H. molitrix were distributed into six groups, namely T1, T2, T3, T4, T5, and T6. All treatments were assessed in triplicates. T1 was designated as the negative control treatment, receiving no Ni exposure or dietary supplementation, whereas T2 acted as the positive control treatment, exposed to sub-lethal concentrations of nickel chloride (NiCl<sub>2</sub>) at 3.6 mg/L. Groups T3-T6 received diets enriched with 1%, 2%, 3% and 4% P. nigrum extract, respectively and were also exposed to 3.6 mgL<sup>-1</sup> NiCl<sub>2</sub> toxicity. The findings of this investigation revealed that T2 exhibited decreased growth responses, characterized by a weight gain (WG) of 8.12 g, percentage weight gain (WG%) of 77.83% and specific growth rate (SGR) of 0.96. Additionally, T2 displayed altered hematological parameters such as reduced red blood cells (RBC: 1.3 × 10<sup>6</sup> mm<sup>-3</sup>) and hemoglobin levels (Hb: 5.8 g/100 ml), and increased white blood cell counts (WBC: 75.31 × 10<sup>3</sup> mm<sup>-3</sup>). Also, T2 showed reduced protein (13.14%), fat (2.15%), and moisture content (73.44%), hepatocyte degeneration, and Ni bioaccumulation in hepatic tissues. In contrast, T1 (control negative) and T3 (1% P. nigrum extract) demonstrated improved growth performance with WG of 18.49 g and 16.92 g, respectively. They also showed increased RBC (1.77 × 10<sup>6</sup> mm<sup>-3</sup> and 2.77 × 10<sup>6</sup> mm<sup>-3</sup>) and Hb levels (9.65 g/100 ml and 8.15 g/100 ml), decreased WBC counts (6.12 × 10<sup>3</sup> mm<sup>-3</sup> and 7.79 × 10<sup>3</sup> mm<sup>-3</sup>), and elevated protein (16.42% and 15.29%), fat (3.22% and 3.11%), and moisture content (76.92% and 76.6%), respectively. Furthermore, liver histological analysis revealed that dietary supplementation with 1% P. nigrum extract (T3) effectively minimized the adverse effects of NiCl2 toxicity, characterized by a normal central vein structure and significantly reduced histological damage. In conclusion, the results show that 1% P. nigrum extract supplementation significantly ameliorates the adverse effects on carcass composition, elevates growth responses, enhances hematological indices, and mitigates the toxic effects of Ni on the histology of H. molitrix. This comprehensive improvement in nutritional quality, growth rates, blood health, and tissue integrity suggests that P. nigrum extract has tremendous potential as a natural remedy for mitigating the adverse effects of Ni toxicity in aquatic species.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"5359-5369"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorating Nickel-Induced Stress in Hypophthalmichthys molitrix (Silver Carp) Through Piper nigrum Extract Supplementation.\",\"authors\":\"Syed Muhammad Farhan Ali Shah, Syed Makhdoom Hussain, Shafaqat Ali, Pallab K Sarker, Khalid A Al-Ghanim, Sunakbaeva Dilara\",\"doi\":\"10.1007/s12011-025-04560-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current study examined the damaging implications of nickel (Ni) toxicity on body composition, growth responses, histology and hematology of Hypophthalmichthys molitrix, as well as the potential mitigating effects of Piper nigrum extract. For this purpose, H. molitrix were distributed into six groups, namely T1, T2, T3, T4, T5, and T6. All treatments were assessed in triplicates. T1 was designated as the negative control treatment, receiving no Ni exposure or dietary supplementation, whereas T2 acted as the positive control treatment, exposed to sub-lethal concentrations of nickel chloride (NiCl<sub>2</sub>) at 3.6 mg/L. Groups T3-T6 received diets enriched with 1%, 2%, 3% and 4% P. nigrum extract, respectively and were also exposed to 3.6 mgL<sup>-1</sup> NiCl<sub>2</sub> toxicity. The findings of this investigation revealed that T2 exhibited decreased growth responses, characterized by a weight gain (WG) of 8.12 g, percentage weight gain (WG%) of 77.83% and specific growth rate (SGR) of 0.96. Additionally, T2 displayed altered hematological parameters such as reduced red blood cells (RBC: 1.3 × 10<sup>6</sup> mm<sup>-3</sup>) and hemoglobin levels (Hb: 5.8 g/100 ml), and increased white blood cell counts (WBC: 75.31 × 10<sup>3</sup> mm<sup>-3</sup>). Also, T2 showed reduced protein (13.14%), fat (2.15%), and moisture content (73.44%), hepatocyte degeneration, and Ni bioaccumulation in hepatic tissues. In contrast, T1 (control negative) and T3 (1% P. nigrum extract) demonstrated improved growth performance with WG of 18.49 g and 16.92 g, respectively. They also showed increased RBC (1.77 × 10<sup>6</sup> mm<sup>-3</sup> and 2.77 × 10<sup>6</sup> mm<sup>-3</sup>) and Hb levels (9.65 g/100 ml and 8.15 g/100 ml), decreased WBC counts (6.12 × 10<sup>3</sup> mm<sup>-3</sup> and 7.79 × 10<sup>3</sup> mm<sup>-3</sup>), and elevated protein (16.42% and 15.29%), fat (3.22% and 3.11%), and moisture content (76.92% and 76.6%), respectively. Furthermore, liver histological analysis revealed that dietary supplementation with 1% P. nigrum extract (T3) effectively minimized the adverse effects of NiCl2 toxicity, characterized by a normal central vein structure and significantly reduced histological damage. In conclusion, the results show that 1% P. nigrum extract supplementation significantly ameliorates the adverse effects on carcass composition, elevates growth responses, enhances hematological indices, and mitigates the toxic effects of Ni on the histology of H. molitrix. This comprehensive improvement in nutritional quality, growth rates, blood health, and tissue integrity suggests that P. nigrum extract has tremendous potential as a natural remedy for mitigating the adverse effects of Ni toxicity in aquatic species.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"5359-5369\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-025-04560-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04560-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ameliorating Nickel-Induced Stress in Hypophthalmichthys molitrix (Silver Carp) Through Piper nigrum Extract Supplementation.
The current study examined the damaging implications of nickel (Ni) toxicity on body composition, growth responses, histology and hematology of Hypophthalmichthys molitrix, as well as the potential mitigating effects of Piper nigrum extract. For this purpose, H. molitrix were distributed into six groups, namely T1, T2, T3, T4, T5, and T6. All treatments were assessed in triplicates. T1 was designated as the negative control treatment, receiving no Ni exposure or dietary supplementation, whereas T2 acted as the positive control treatment, exposed to sub-lethal concentrations of nickel chloride (NiCl2) at 3.6 mg/L. Groups T3-T6 received diets enriched with 1%, 2%, 3% and 4% P. nigrum extract, respectively and were also exposed to 3.6 mgL-1 NiCl2 toxicity. The findings of this investigation revealed that T2 exhibited decreased growth responses, characterized by a weight gain (WG) of 8.12 g, percentage weight gain (WG%) of 77.83% and specific growth rate (SGR) of 0.96. Additionally, T2 displayed altered hematological parameters such as reduced red blood cells (RBC: 1.3 × 106 mm-3) and hemoglobin levels (Hb: 5.8 g/100 ml), and increased white blood cell counts (WBC: 75.31 × 103 mm-3). Also, T2 showed reduced protein (13.14%), fat (2.15%), and moisture content (73.44%), hepatocyte degeneration, and Ni bioaccumulation in hepatic tissues. In contrast, T1 (control negative) and T3 (1% P. nigrum extract) demonstrated improved growth performance with WG of 18.49 g and 16.92 g, respectively. They also showed increased RBC (1.77 × 106 mm-3 and 2.77 × 106 mm-3) and Hb levels (9.65 g/100 ml and 8.15 g/100 ml), decreased WBC counts (6.12 × 103 mm-3 and 7.79 × 103 mm-3), and elevated protein (16.42% and 15.29%), fat (3.22% and 3.11%), and moisture content (76.92% and 76.6%), respectively. Furthermore, liver histological analysis revealed that dietary supplementation with 1% P. nigrum extract (T3) effectively minimized the adverse effects of NiCl2 toxicity, characterized by a normal central vein structure and significantly reduced histological damage. In conclusion, the results show that 1% P. nigrum extract supplementation significantly ameliorates the adverse effects on carcass composition, elevates growth responses, enhances hematological indices, and mitigates the toxic effects of Ni on the histology of H. molitrix. This comprehensive improvement in nutritional quality, growth rates, blood health, and tissue integrity suggests that P. nigrum extract has tremendous potential as a natural remedy for mitigating the adverse effects of Ni toxicity in aquatic species.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.