利用Dove棱镜减少光谱表面增强拉曼光谱成像中的光谱重叠。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Deben N Shoup, Abigail E Smith, Zachary D Schultz
{"title":"利用Dove棱镜减少光谱表面增强拉曼光谱成像中的光谱重叠。","authors":"Deben N Shoup, Abigail E Smith, Zachary D Schultz","doi":"10.1177/00037028251322540","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to combine microscopy and spectroscopy is beneficial for directly monitoring physical and biological processes. Spectral imaging approaches, where a transmission diffraction grating is placed near an imaging sensor to collect both the spatial image and spectrum for each object in the field of view, provide a relatively simple method to simultaneously collect images and spectroscopic responses on the same sensor. Initially demonstrated with fluorescence spectroscopy, the use of spectral imaging in Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) can provide a vibrational spectrum containing molecularly specific information that can inform on chemical changes. However, a major complication to this approach is the spectral overlap that occurs when objects are spaced closely together horizontally. In this work, we add a dove prism to a spectral imaging instrument developed for SERS imaging, enabling rotation of the collected SERS image and dispersed spectrum onto the imaging complementary metal-oxide semiconductor (CMOS) sensor. We demonstrate that this effectively reduces spectral overlap for emitters with clear separation between them and emitters with slightly overlapping point spread functions thereby facilitating collection of unambiguous spectra from each emitter.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251322540"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Spectral Overlap in Spectral Surface-Enhanced Raman Spectroscopy Imaging Using a Dove Prism.\",\"authors\":\"Deben N Shoup, Abigail E Smith, Zachary D Schultz\",\"doi\":\"10.1177/00037028251322540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to combine microscopy and spectroscopy is beneficial for directly monitoring physical and biological processes. Spectral imaging approaches, where a transmission diffraction grating is placed near an imaging sensor to collect both the spatial image and spectrum for each object in the field of view, provide a relatively simple method to simultaneously collect images and spectroscopic responses on the same sensor. Initially demonstrated with fluorescence spectroscopy, the use of spectral imaging in Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) can provide a vibrational spectrum containing molecularly specific information that can inform on chemical changes. However, a major complication to this approach is the spectral overlap that occurs when objects are spaced closely together horizontally. In this work, we add a dove prism to a spectral imaging instrument developed for SERS imaging, enabling rotation of the collected SERS image and dispersed spectrum onto the imaging complementary metal-oxide semiconductor (CMOS) sensor. We demonstrate that this effectively reduces spectral overlap for emitters with clear separation between them and emitters with slightly overlapping point spread functions thereby facilitating collection of unambiguous spectra from each emitter.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028251322540\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251322540\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251322540","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

结合显微镜和光谱学的能力有利于直接监测物理和生物过程。光谱成像方法是在成像传感器附近放置透射衍射光栅,收集视场内每个物体的空间图像和光谱,为同时收集同一传感器上的图像和光谱响应提供了一种相对简单的方法。最初用荧光光谱证明,在拉曼光谱和表面增强拉曼光谱(SERS)中使用光谱成像可以提供包含分子特定信息的振动光谱,可以告知化学变化。然而,这种方法的一个主要问题是,当物体在水平方向上紧密地间隔在一起时,会出现光谱重叠。在这项工作中,我们将鸽子棱镜添加到用于SERS成像的光谱成像仪器中,使收集的SERS图像和分散光谱旋转到成像互补金属氧化物半导体(CMOS)传感器上。我们证明,这有效地减少了具有清晰分离的发射体和具有轻微重叠点扩展函数的发射体的光谱重叠,从而有助于从每个发射体收集明确的光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of Spectral Overlap in Spectral Surface-Enhanced Raman Spectroscopy Imaging Using a Dove Prism.

The ability to combine microscopy and spectroscopy is beneficial for directly monitoring physical and biological processes. Spectral imaging approaches, where a transmission diffraction grating is placed near an imaging sensor to collect both the spatial image and spectrum for each object in the field of view, provide a relatively simple method to simultaneously collect images and spectroscopic responses on the same sensor. Initially demonstrated with fluorescence spectroscopy, the use of spectral imaging in Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) can provide a vibrational spectrum containing molecularly specific information that can inform on chemical changes. However, a major complication to this approach is the spectral overlap that occurs when objects are spaced closely together horizontally. In this work, we add a dove prism to a spectral imaging instrument developed for SERS imaging, enabling rotation of the collected SERS image and dispersed spectrum onto the imaging complementary metal-oxide semiconductor (CMOS) sensor. We demonstrate that this effectively reduces spectral overlap for emitters with clear separation between them and emitters with slightly overlapping point spread functions thereby facilitating collection of unambiguous spectra from each emitter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信