先验规范对贝叶斯因子混合建模性能的影响。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Yan Wang, Eunsook Kim, Hsien-Yuan Hsu
{"title":"先验规范对贝叶斯因子混合建模性能的影响。","authors":"Yan Wang, Eunsook Kim, Hsien-Yuan Hsu","doi":"10.3758/s13428-025-02619-0","DOIUrl":null,"url":null,"abstract":"<p><p>Factor mixture modeling (FMM) has been increasingly adopted in social, behavioral, and health sciences to identify population heterogeneity by incorporating both continuous latent variables (i.e., latent factors) and categorical latent variables (i.e., latent classes). FMM is known to face a variety of methodological challenges given its model complexity, and this study evaluates the potential of Bayesian estimation, particularly prior specifications, in addressing two challenges of FMM: classification accuracy and parameter recovery. We considered possible scenarios in applied research where subjective beliefs regarding class separation were incorporated into prior specifications such that subjective class separation might be greater or smaller than the true class separation in the population. Results of comprehensive Monte Carlo simulations showed adequate model performance using a moderately informative prior with subjective class separation greater than the true class separation. Practical implications for researchers are provided.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 4","pages":"103"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of prior specifications on performance of Bayesian factor mixture modeling.\",\"authors\":\"Yan Wang, Eunsook Kim, Hsien-Yuan Hsu\",\"doi\":\"10.3758/s13428-025-02619-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Factor mixture modeling (FMM) has been increasingly adopted in social, behavioral, and health sciences to identify population heterogeneity by incorporating both continuous latent variables (i.e., latent factors) and categorical latent variables (i.e., latent classes). FMM is known to face a variety of methodological challenges given its model complexity, and this study evaluates the potential of Bayesian estimation, particularly prior specifications, in addressing two challenges of FMM: classification accuracy and parameter recovery. We considered possible scenarios in applied research where subjective beliefs regarding class separation were incorporated into prior specifications such that subjective class separation might be greater or smaller than the true class separation in the population. Results of comprehensive Monte Carlo simulations showed adequate model performance using a moderately informative prior with subjective class separation greater than the true class separation. Practical implications for researchers are provided.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 4\",\"pages\":\"103\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-025-02619-0\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02619-0","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

因子混合模型(FMM)在社会、行为和健康科学中越来越多地被采用,通过结合连续潜在变量(即潜在因素)和分类潜在变量(即潜在类别)来识别人口异质性。众所周知,由于模型的复杂性,FMM面临着各种方法上的挑战,本研究评估了贝叶斯估计的潜力,特别是先前的规范,在解决FMM的两个挑战:分类精度和参数恢复。我们在应用研究中考虑了可能的情况,其中关于阶级分离的主观信念被纳入先前的规范,这样主观阶级分离可能大于或小于人口中的真实阶级分离。综合蒙特卡罗模拟的结果显示,使用适度信息先验,主观类分离大于真实类分离,具有足够的模型性能。为研究人员提供了实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of prior specifications on performance of Bayesian factor mixture modeling.

Factor mixture modeling (FMM) has been increasingly adopted in social, behavioral, and health sciences to identify population heterogeneity by incorporating both continuous latent variables (i.e., latent factors) and categorical latent variables (i.e., latent classes). FMM is known to face a variety of methodological challenges given its model complexity, and this study evaluates the potential of Bayesian estimation, particularly prior specifications, in addressing two challenges of FMM: classification accuracy and parameter recovery. We considered possible scenarios in applied research where subjective beliefs regarding class separation were incorporated into prior specifications such that subjective class separation might be greater or smaller than the true class separation in the population. Results of comprehensive Monte Carlo simulations showed adequate model performance using a moderately informative prior with subjective class separation greater than the true class separation. Practical implications for researchers are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信