内皮细胞极性在健康和疾病。

IF 0.6 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Moe Thiha, Takao Hikita, Masanori Nakayama
{"title":"内皮细胞极性在健康和疾病。","authors":"Moe Thiha, Takao Hikita, Masanori Nakayama","doi":"10.18926/AMO/68353","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front-rear, apical-basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes.</p>","PeriodicalId":7017,"journal":{"name":"Acta medica Okayama","volume":"79 1","pages":"1-7"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial Cell Polarity in Health and Disease.\",\"authors\":\"Moe Thiha, Takao Hikita, Masanori Nakayama\",\"doi\":\"10.18926/AMO/68353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front-rear, apical-basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes.</p>\",\"PeriodicalId\":7017,\"journal\":{\"name\":\"Acta medica Okayama\",\"volume\":\"79 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta medica Okayama\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.18926/AMO/68353\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta medica Okayama","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18926/AMO/68353","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

内皮细胞极性是血管组织和功能的基础,影响血管生成、血管稳定性和对剪切应力的反应等过程。本文综述了内皮细胞极性调控的分子机制,重点介绍了PAR极性复合物和Rho家族GTPases等关键分子。这些通路协调内皮细胞的前后极性、顶基极性和平面极性,对血管结构的正常形成和维持至关重要。在健康情况下,内皮细胞的极性不仅保证血管的有序发育,血管尖细胞在血管生成过程中具有不同的极性,而且保证血管的完整性和功能。然而,在疾病状态下,极性的破坏会导致诸如冠状动脉疾病(其中平面极性的改变会加剧动脉粥样硬化)和癌症(其中肿瘤血管极性的破坏会导致血管生长和功能异常)等病理。了解细胞极性及其破坏不仅是理解细胞如何与微环境相互作用并将自己组织成复杂的器官特异性组织的基础,也是开发针对心血管疾病和恶性肿瘤等一系列疾病的新颖,靶向和治疗策略的基础,最终改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endothelial Cell Polarity in Health and Disease.

Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front-rear, apical-basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta medica Okayama
Acta medica Okayama 医学-医学:研究与实验
CiteScore
1.00
自引率
0.00%
发文量
110
审稿时长
6-12 weeks
期刊介绍: Acta Medica Okayama (AMO) publishes papers relating to all areas of basic and clinical medical science. Papers may be submitted by those not affiliated with Okayama University. Only original papers which have not been published or submitted elsewhere and timely review articles should be submitted. Original papers may be Full-length Articles or Short Communications. Case Reports are considered if they describe significant and substantial new findings. Preliminary observations are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信