叶绿体蛋白易位复合物及其调控。

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiale Xing, Junting Pan, Wenqiang Yang
{"title":"叶绿体蛋白易位复合物及其调控。","authors":"Jiale Xing,&nbsp;Junting Pan,&nbsp;Wenqiang Yang","doi":"10.1111/jipb.13875","DOIUrl":null,"url":null,"abstract":"<p>Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 4","pages":"912-925"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13875","citationCount":"0","resultStr":"{\"title\":\"Chloroplast protein translocation complexes and their regulation\",\"authors\":\"Jiale Xing,&nbsp;Junting Pan,&nbsp;Wenqiang Yang\",\"doi\":\"10.1111/jipb.13875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\"67 4\",\"pages\":\"912-925\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13875\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13875\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13875","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

叶绿体在植物和藻类中经过超过10亿年的进化而得到完善,是太阳能的高效和有弹性的转换器。此外,这些细胞器作为复杂的合成代谢工厂,合成各种初级和次级代谢物。叶绿体的功能依赖于3000多种蛋白质的参与,其中大部分由核基因组编码。这些核编码蛋白必须穿过叶绿体双脂膜才能发挥功能。这一易位过程由叶绿体外膜和内膜(分别为外叶绿体[TOC]和内叶绿体[TIC]复合体)上的易位子促进,并由一个提供能量的马达驱动。尽管经过数十年的研究,这些复合物的组成仍然存在很大争议,特别是关于TIC和运动成分。然而,最近的研究为TOC/TIC复合物提供了有价值的见解,同时也对其机制提出了新的问题。本文就这些复合物的结构和功能的最新研究进展作一综述。此外,我们简要地研究了蛋白质质量控制过程,逆行信号传导,并讨论了该领域未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chloroplast protein translocation complexes and their regulation

Chloroplast protein translocation complexes and their regulation

Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信