Co-N-C单原子位的工程不对称电子结构实现优异的电化学H2O2生产和生物质升级。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kun Yu, Shiming Guan, Dr. Wenbiao Zhang, Wanling Zhang, Prof. Dr. Yuying Meng, Prof. Dr. Huaijun Lin, Prof. Dr. Qingsheng Gao
{"title":"Co-N-C单原子位的工程不对称电子结构实现优异的电化学H2O2生产和生物质升级。","authors":"Kun Yu,&nbsp;Shiming Guan,&nbsp;Dr. Wenbiao Zhang,&nbsp;Wanling Zhang,&nbsp;Prof. Dr. Yuying Meng,&nbsp;Prof. Dr. Huaijun Lin,&nbsp;Prof. Dr. Qingsheng Gao","doi":"10.1002/anie.202502383","DOIUrl":null,"url":null,"abstract":"<p>To advance electrochemical H<sub>2</sub>O<sub>2</sub> production and unravel catalytic mechanisms, the precise structural coordination of single-atomic M-N-C electrocatalysts is urgently required. Herein, the Co─N<sub>5</sub> site with an asymmetric electronic configuration is constructed to boost the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) compared to symmetric Co─N<sub>4</sub>, effectively overcoming the trade-off between activity and selectivity in H<sub>2</sub>O<sub>2</sub> production. Both experimental and theoretical analyses demonstrate that breaking the symmetry of Co─N sites promotes the activation of O<sub>2</sub> molecules and moderates the adsorption of the key *OOH intermediate by disrupting the linear scaling relationship for intermediates adsorption. This modulation enables efficient H₂O₂ production and its effective retention for subsequent applications. As a proof of concept, Co─N<sub>5</sub> achieves a H<sub>2</sub>O<sub>2</sub> production rate as high as 16.1 mol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> in a flow cell, outperforming most recently reported counterparts. Furthermore, the coupling of 2e<sup>−</sup> ORR with the oxidation of cellulose-derived carbohydrates accomplishes high formic acid yields (84.1% from glucose and 62.0%–92.1% from other substrates), underpinning the sustainable electro-refinery for biomass valorization at ambient conditions. By elucidating the intrinsic relationship between 2e⁻ ORR and the asymmetry of single-atomic sites, this work paves the way for high-performance electrosynthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 19","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Asymmetric Electronic Structure of Co─N─C Single-Atomic Sites Toward Excellent Electrochemical H2O2 Production and Biomass Upgrading\",\"authors\":\"Kun Yu,&nbsp;Shiming Guan,&nbsp;Dr. Wenbiao Zhang,&nbsp;Wanling Zhang,&nbsp;Prof. Dr. Yuying Meng,&nbsp;Prof. Dr. Huaijun Lin,&nbsp;Prof. Dr. Qingsheng Gao\",\"doi\":\"10.1002/anie.202502383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To advance electrochemical H<sub>2</sub>O<sub>2</sub> production and unravel catalytic mechanisms, the precise structural coordination of single-atomic M-N-C electrocatalysts is urgently required. Herein, the Co─N<sub>5</sub> site with an asymmetric electronic configuration is constructed to boost the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) compared to symmetric Co─N<sub>4</sub>, effectively overcoming the trade-off between activity and selectivity in H<sub>2</sub>O<sub>2</sub> production. Both experimental and theoretical analyses demonstrate that breaking the symmetry of Co─N sites promotes the activation of O<sub>2</sub> molecules and moderates the adsorption of the key *OOH intermediate by disrupting the linear scaling relationship for intermediates adsorption. This modulation enables efficient H₂O₂ production and its effective retention for subsequent applications. As a proof of concept, Co─N<sub>5</sub> achieves a H<sub>2</sub>O<sub>2</sub> production rate as high as 16.1 mol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> in a flow cell, outperforming most recently reported counterparts. Furthermore, the coupling of 2e<sup>−</sup> ORR with the oxidation of cellulose-derived carbohydrates accomplishes high formic acid yields (84.1% from glucose and 62.0%–92.1% from other substrates), underpinning the sustainable electro-refinery for biomass valorization at ambient conditions. By elucidating the intrinsic relationship between 2e⁻ ORR and the asymmetry of single-atomic sites, this work paves the way for high-performance electrosynthesis.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 19\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502383\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502383","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了推进电化学生产H2O2和揭示催化机理,迫切需要精确的单原子M-N-C电催化剂结构配位。本文构建了具有不对称电子构型的Co-N5位点,与对称的Co-N4相比,可以促进双电子氧还原反应(2e- ORR),有效地克服了H2O2生成中活性和选择性之间的权衡。实验和理论分析均表明,破坏Co-N位点的对称性可以促进O2分子的活化,并通过破坏中间体吸附的线性标度关系来减缓关键*OOH中间体的吸附。这种调制可以有效地产生H2O2,并为后续应用提供有效的保留。作为概念证明,Co-N5在流动池中实现了高达16.1 mol gcat-1 h-1的H2O2产率,优于最近报道的同类产品。此外,2e- ORR与纤维素衍生碳水化合物氧化的耦合实现了高甲酸产率(葡萄糖产率为84.1%,其他底物产率为62.0-92.1%),为环境条件下生物质增值的可持续电精炼厂奠定了基础。通过阐明2e- ORR与单原子位不对称性之间的内在关系,本工作为高性能电合成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Asymmetric Electronic Structure of Co─N─C Single-Atomic Sites Toward Excellent Electrochemical H2O2 Production and Biomass Upgrading

Engineering Asymmetric Electronic Structure of Co─N─C Single-Atomic Sites Toward Excellent Electrochemical H2O2 Production and Biomass Upgrading

To advance electrochemical H2O2 production and unravel catalytic mechanisms, the precise structural coordination of single-atomic M-N-C electrocatalysts is urgently required. Herein, the Co─N5 site with an asymmetric electronic configuration is constructed to boost the two-electron oxygen reduction reaction (2e ORR) compared to symmetric Co─N4, effectively overcoming the trade-off between activity and selectivity in H2O2 production. Both experimental and theoretical analyses demonstrate that breaking the symmetry of Co─N sites promotes the activation of O2 molecules and moderates the adsorption of the key *OOH intermediate by disrupting the linear scaling relationship for intermediates adsorption. This modulation enables efficient H₂O₂ production and its effective retention for subsequent applications. As a proof of concept, Co─N5 achieves a H2O2 production rate as high as 16.1 mol gcat−1 h−1 in a flow cell, outperforming most recently reported counterparts. Furthermore, the coupling of 2e ORR with the oxidation of cellulose-derived carbohydrates accomplishes high formic acid yields (84.1% from glucose and 62.0%–92.1% from other substrates), underpinning the sustainable electro-refinery for biomass valorization at ambient conditions. By elucidating the intrinsic relationship between 2e⁻ ORR and the asymmetry of single-atomic sites, this work paves the way for high-performance electrosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信