基于浅电路的哈密顿谱的有效量子估计。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-05-13 Epub Date: 2025-02-26 DOI:10.1021/acs.jctc.4c01601
Pingyu Zhu, Chao Wu, Yang Wang, Jiacheng Liu, Gongyu Xia, Yan Wang, Qilin Zheng, Miaomiao Yu, Chang Zhao, Yuxing Du, Kaikai Zhang, Kun Wang, Ping Xu
{"title":"基于浅电路的哈密顿谱的有效量子估计。","authors":"Pingyu Zhu, Chao Wu, Yang Wang, Jiacheng Liu, Gongyu Xia, Yan Wang, Qilin Zheng, Miaomiao Yu, Chang Zhao, Yuxing Du, Kaikai Zhang, Kun Wang, Ping Xu","doi":"10.1021/acs.jctc.4c01601","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum computers promise to provide groundbreaking speed in solving complex problems. However, in the present-day noisy intermediate-scale quantum era, algorithms that require fewer resources are highly desired. In this work, we develop a new method called the variational rodeo eigensolver (VRE) for efficiently searching eigenstates and estimating eigenvalues with shallow circuits. We experimentally demonstrate this method on a programmable photonic chip with a single-qubit exciton transfer Hamiltonian whose eigenstates are searched with fidelities of more than 99% and their eigenvalues are estimated, reaching chemical accuracy. Furthermore, we experimentally estimate the ground energies of the simplified Hamiltonian of the hydrogen molecule with different atomic separations. To verify the scalability of VRE, we numerically search eigenstates of a tapered two-qubit Hamiltonian of hydrogen-helium ion. Our work provides a systematic and promising approach for the efficient estimation of Hamiltonian spectra.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"4417-4425"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Quantum Estimation of Hamiltonian Spectra via Shallow Circuits.\",\"authors\":\"Pingyu Zhu, Chao Wu, Yang Wang, Jiacheng Liu, Gongyu Xia, Yan Wang, Qilin Zheng, Miaomiao Yu, Chang Zhao, Yuxing Du, Kaikai Zhang, Kun Wang, Ping Xu\",\"doi\":\"10.1021/acs.jctc.4c01601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum computers promise to provide groundbreaking speed in solving complex problems. However, in the present-day noisy intermediate-scale quantum era, algorithms that require fewer resources are highly desired. In this work, we develop a new method called the variational rodeo eigensolver (VRE) for efficiently searching eigenstates and estimating eigenvalues with shallow circuits. We experimentally demonstrate this method on a programmable photonic chip with a single-qubit exciton transfer Hamiltonian whose eigenstates are searched with fidelities of more than 99% and their eigenvalues are estimated, reaching chemical accuracy. Furthermore, we experimentally estimate the ground energies of the simplified Hamiltonian of the hydrogen molecule with different atomic separations. To verify the scalability of VRE, we numerically search eigenstates of a tapered two-qubit Hamiltonian of hydrogen-helium ion. Our work provides a systematic and promising approach for the efficient estimation of Hamiltonian spectra.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"4417-4425\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01601\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01601","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机有望在解决复杂问题方面提供突破性的速度。然而,在当今嘈杂的中等规模量子时代,需要更少资源的算法是非常需要的。在这项工作中,我们开发了一种新的方法,称为变分rodeo特征求解器(VRE),用于有效地搜索特征状态和估计浅层电路的特征值。我们在一个具有单量子比特激子转移哈密顿量的可编程光子芯片上实验证明了该方法,其特征态的搜索保真度超过99%,并估计了它们的特征值,达到了化学精度。此外,我们还通过实验估计了不同原子分离情况下氢分子简化哈密顿量的地面能量。为了验证VRE的可扩展性,我们对氢氦离子的锥形双量子位哈密顿量的特征态进行了数值搜索。我们的工作为有效估计哈密顿谱提供了一种系统的、有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Quantum Estimation of Hamiltonian Spectra via Shallow Circuits.

Quantum computers promise to provide groundbreaking speed in solving complex problems. However, in the present-day noisy intermediate-scale quantum era, algorithms that require fewer resources are highly desired. In this work, we develop a new method called the variational rodeo eigensolver (VRE) for efficiently searching eigenstates and estimating eigenvalues with shallow circuits. We experimentally demonstrate this method on a programmable photonic chip with a single-qubit exciton transfer Hamiltonian whose eigenstates are searched with fidelities of more than 99% and their eigenvalues are estimated, reaching chemical accuracy. Furthermore, we experimentally estimate the ground energies of the simplified Hamiltonian of the hydrogen molecule with different atomic separations. To verify the scalability of VRE, we numerically search eigenstates of a tapered two-qubit Hamiltonian of hydrogen-helium ion. Our work provides a systematic and promising approach for the efficient estimation of Hamiltonian spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信