非共价相互作用基准的另一个角度。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-03-11 Epub Date: 2025-02-26 DOI:10.1021/acs.jctc.4c01512
Vladimir Fishman, Michał Lesiuk, Jan M L Martin, A Daniel Boese
{"title":"非共价相互作用基准的另一个角度。","authors":"Vladimir Fishman, Michał Lesiuk, Jan M L Martin, A Daniel Boese","doi":"10.1021/acs.jctc.4c01512","DOIUrl":null,"url":null,"abstract":"<p><p>For noncovalent interactions, the CCSD(T)-coupled cluster method is widely regarded as the \"gold standard\". With localized orbital approximations, benchmarks for ever larger complexes are being published, yet FN-DMC (fixed-node quantum Monte Carlo) intermolecular interaction energies diverge to a progressively larger degree from CCSD(T) as the system size grows, particularly when π-stacking is involved. Unfortunately, post-CCSD(T) methods like CCSDT(Q) are cost-prohibitive, which requires us to consider alternative means of estimating post-CCSD(T) contributions. In this work, we take a step back by considering the evolution of the correlation energy with respect to the number of subunits for such π-stacked sequences as acene dimers and alkadiene dimers. We show it to be almost perfectly linear and propose the slope of the line as a probe for the behavior of a given electron correlation method. By going further into the coupled cluster expansion and comparing with CCSDT(Q) results for benzene and naphthalene dimers, we show that CCSD(T) does slightly overbind but not as strongly as suggested by the FN-DMC results.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"2311-2324"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912214/pdf/","citationCount":"0","resultStr":"{\"title\":\"Another Angle on Benchmarking Noncovalent Interactions.\",\"authors\":\"Vladimir Fishman, Michał Lesiuk, Jan M L Martin, A Daniel Boese\",\"doi\":\"10.1021/acs.jctc.4c01512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For noncovalent interactions, the CCSD(T)-coupled cluster method is widely regarded as the \\\"gold standard\\\". With localized orbital approximations, benchmarks for ever larger complexes are being published, yet FN-DMC (fixed-node quantum Monte Carlo) intermolecular interaction energies diverge to a progressively larger degree from CCSD(T) as the system size grows, particularly when π-stacking is involved. Unfortunately, post-CCSD(T) methods like CCSDT(Q) are cost-prohibitive, which requires us to consider alternative means of estimating post-CCSD(T) contributions. In this work, we take a step back by considering the evolution of the correlation energy with respect to the number of subunits for such π-stacked sequences as acene dimers and alkadiene dimers. We show it to be almost perfectly linear and propose the slope of the line as a probe for the behavior of a given electron correlation method. By going further into the coupled cluster expansion and comparing with CCSDT(Q) results for benzene and naphthalene dimers, we show that CCSD(T) does slightly overbind but not as strongly as suggested by the FN-DMC results.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"2311-2324\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01512\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于非共价相互作用,CCSD(T)耦合簇方法被广泛认为是“金标准”。随着局域轨道近似,越来越大的配合物的基准被公布,然而,随着系统尺寸的增长,特别是当π堆叠涉及时,FN-DMC(固定节点量子蒙特卡罗)分子间相互作用能量从CCSD(T)发散到一个逐渐增大的程度。不幸的是,像CCSDT(Q)这样的后ccsd (T)方法成本过高,这要求我们考虑估算后ccsd (T)贡献的替代方法。在这项工作中,我们退一步考虑相关能的演变相对于亚基的数量π堆叠序列,如烯二聚体和烷二聚体。我们证明它几乎是完全线性的,并提出线的斜率作为给定电子相关方法行为的探针。通过进一步研究苯和萘二聚体的耦合簇展,并与CCSDT(Q)结果进行比较,我们发现CCSD(T)确实有轻微的过结合,但不像FN-DMC结果所表明的那样强烈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another Angle on Benchmarking Noncovalent Interactions.

For noncovalent interactions, the CCSD(T)-coupled cluster method is widely regarded as the "gold standard". With localized orbital approximations, benchmarks for ever larger complexes are being published, yet FN-DMC (fixed-node quantum Monte Carlo) intermolecular interaction energies diverge to a progressively larger degree from CCSD(T) as the system size grows, particularly when π-stacking is involved. Unfortunately, post-CCSD(T) methods like CCSDT(Q) are cost-prohibitive, which requires us to consider alternative means of estimating post-CCSD(T) contributions. In this work, we take a step back by considering the evolution of the correlation energy with respect to the number of subunits for such π-stacked sequences as acene dimers and alkadiene dimers. We show it to be almost perfectly linear and propose the slope of the line as a probe for the behavior of a given electron correlation method. By going further into the coupled cluster expansion and comparing with CCSDT(Q) results for benzene and naphthalene dimers, we show that CCSD(T) does slightly overbind but not as strongly as suggested by the FN-DMC results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信