通过C-C键切割的分子环重塑。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2025-03-18 Epub Date: 2025-02-27 DOI:10.1021/acs.accounts.4c00846
Zengrui Cheng, Zhibin Hu, Ning Jiao
{"title":"通过C-C键切割的分子环重塑。","authors":"Zengrui Cheng, Zhibin Hu, Ning Jiao","doi":"10.1021/acs.accounts.4c00846","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusStable and inert C-C bonds form the fundamental framework of organic compounds. Consequently, direct transformations involving C-C bond cleavage present an innovative approach for the rapid modification and remodeling of molecular skeletons. In recent years, the concept of molecular skeletal editing has garnered widespread attention and has been significantly developed, providing new opportunities for the late-stage modification of bioactive molecules, the high-value transformation of bulk chemicals, and a revolution in the traditional fragment coupling strategies of chemical synthesis. Notable advancements in this field have focused on C-C bond cleavage and the remodeling of cyclic molecules, including ring expansion, ring contraction, and ring-opening reactions, thereby enriching the synthetic toolbox available to chemists. However, selective C-C bond transformation remains a formidable challenge, especially in the remodeling of complex molecules, due to the high bond dissociation energy and the difficulty in achieving precise selectivity control. Over the past few years, our group has made efforts to address these challenges. We have demonstrated the potential of cyclic molecule remodeling reactions as an efficient strategy for the synthesis and modification of complex molecules.Herein, we present two major thematic advancements achieved by our group, utilizing cascade activation and entropy-driven reconstruction strategies for molecular ring remodeling via C-C bond cleavage. These strategies are characterized by mild conditions, the accessibility of catalysts and reagents, and exceptional functional group compatibility, thereby emerging as novel approaches for molecular ring remodeling through atom-incorporation reactions mainly on nitrogenation, oxygenation, and halogenation to synthesize pharmaceuticals, natural products, and material molecules. (1) Ring expansion reactions: We developed novel reactions that enable the insertion of C-, N-, and O-containing units into molecular rings. These methodologies offer practical and efficient routes for synthesizing amides, amines, lactones, and nitrogen-containing heterocycles. (2) Ring-opening reactions: C-C bond cleavage in ring-opening reactions enables the efficient construction of distally difunctionalized molecular frameworks. By utilizing a transition metal catalysis and radical-mediated process, we have successfully achieved the cleavage of both C-C single bonds and C═C double bonds within molecular rings. Furthermore, we have tackled the highly challenging arene ring-opening (ARO) reaction, enabling the construction of stereoselective conjugated systems through the unsaturation liberation of aromatic systems. Mechanistic studies and DFT calculations have provided critical insights into these processes. We have also identified key intermediates involved in C-C bond cleavage, including benzyl azide, <i>O</i>-acetyl hydroxylamine, β-azido peroxyl radical, copper bisnitrene, and 2-nitrene indazole. These findings have deepened our understanding of the mechanisms and the entropy-driven reconstruction strategy, which has further promoted the discovery of related C-C bond transformations of acyclic substrates.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"1003-1022"},"PeriodicalIF":16.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Ring Remodeling through C-C Bond Cleavage.\",\"authors\":\"Zengrui Cheng, Zhibin Hu, Ning Jiao\",\"doi\":\"10.1021/acs.accounts.4c00846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ConspectusStable and inert C-C bonds form the fundamental framework of organic compounds. Consequently, direct transformations involving C-C bond cleavage present an innovative approach for the rapid modification and remodeling of molecular skeletons. In recent years, the concept of molecular skeletal editing has garnered widespread attention and has been significantly developed, providing new opportunities for the late-stage modification of bioactive molecules, the high-value transformation of bulk chemicals, and a revolution in the traditional fragment coupling strategies of chemical synthesis. Notable advancements in this field have focused on C-C bond cleavage and the remodeling of cyclic molecules, including ring expansion, ring contraction, and ring-opening reactions, thereby enriching the synthetic toolbox available to chemists. However, selective C-C bond transformation remains a formidable challenge, especially in the remodeling of complex molecules, due to the high bond dissociation energy and the difficulty in achieving precise selectivity control. Over the past few years, our group has made efforts to address these challenges. We have demonstrated the potential of cyclic molecule remodeling reactions as an efficient strategy for the synthesis and modification of complex molecules.Herein, we present two major thematic advancements achieved by our group, utilizing cascade activation and entropy-driven reconstruction strategies for molecular ring remodeling via C-C bond cleavage. These strategies are characterized by mild conditions, the accessibility of catalysts and reagents, and exceptional functional group compatibility, thereby emerging as novel approaches for molecular ring remodeling through atom-incorporation reactions mainly on nitrogenation, oxygenation, and halogenation to synthesize pharmaceuticals, natural products, and material molecules. (1) Ring expansion reactions: We developed novel reactions that enable the insertion of C-, N-, and O-containing units into molecular rings. These methodologies offer practical and efficient routes for synthesizing amides, amines, lactones, and nitrogen-containing heterocycles. (2) Ring-opening reactions: C-C bond cleavage in ring-opening reactions enables the efficient construction of distally difunctionalized molecular frameworks. By utilizing a transition metal catalysis and radical-mediated process, we have successfully achieved the cleavage of both C-C single bonds and C═C double bonds within molecular rings. Furthermore, we have tackled the highly challenging arene ring-opening (ARO) reaction, enabling the construction of stereoselective conjugated systems through the unsaturation liberation of aromatic systems. Mechanistic studies and DFT calculations have provided critical insights into these processes. We have also identified key intermediates involved in C-C bond cleavage, including benzyl azide, <i>O</i>-acetyl hydroxylamine, β-azido peroxyl radical, copper bisnitrene, and 2-nitrene indazole. These findings have deepened our understanding of the mechanisms and the entropy-driven reconstruction strategy, which has further promoted the discovery of related C-C bond transformations of acyclic substrates.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"1003-1022\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.4c00846\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00846","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

稳定的和惰性的碳-碳键构成了有机化合物的基本结构。因此,涉及C-C键切割的直接转化为分子骨架的快速修饰和重塑提供了一种创新的方法。近年来,分子骨架编辑的概念得到了广泛关注和显著发展,为生物活性分子的后期修饰、大宗化学品的高价值转化以及传统的片段偶联化学合成策略的革命提供了新的机遇。该领域的显著进展集中在C-C键的裂解和环分子的重塑,包括环扩张、环收缩和环开反应,从而丰富了化学家可用的合成工具箱。然而,选择性C-C键转化仍然是一个艰巨的挑战,特别是在复杂分子的重塑中,由于高键解离能和难以实现精确的选择性控制。在过去的几年里,我们集团一直在努力应对这些挑战。我们已经证明了环分子重塑反应作为合成和修饰复杂分子的有效策略的潜力。在此,我们介绍了我们团队取得的两个主要主题进展,利用级联激活和熵驱动重建策略通过C-C键切割进行分子环重塑。这些策略的特点是条件温和,催化剂和试剂的可及性,以及特殊的官能团相容性,因此成为通过原子掺入反应(主要是氮化,氧化和卤化)来合成药物,天然产物和材料分子的分子环重塑的新方法。(1)环扩展反应:我们开发了新的反应,可以将含C、N和o的单元插入到分子环中。这些方法为酰胺类、胺类、内酯类和含氮杂环化合物的合成提供了实用和高效的途径。(2)开环反应:开环反应中C-C键的裂解使得远端双功能化分子框架的高效构建成为可能。通过利用过渡金属催化和自由基介导的过程,我们成功地实现了分子环内C-C单键和C = C双键的裂解。此外,我们还解决了极具挑战性的芳烃开环(ARO)反应,通过芳香体系的不饱和解离,构建了立体选择共轭体系。机械研究和DFT计算为这些过程提供了重要的见解。我们还确定了参与C-C键裂解的关键中间体,包括叠氮苄基、o -乙酰羟胺、β-叠氮过氧基、双亚硝基铜和2-亚硝基茚唑。这些发现加深了我们对机制和熵驱动重构策略的理解,进一步促进了非环底物相关C-C键转化的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Ring Remodeling through C-C Bond Cleavage.

ConspectusStable and inert C-C bonds form the fundamental framework of organic compounds. Consequently, direct transformations involving C-C bond cleavage present an innovative approach for the rapid modification and remodeling of molecular skeletons. In recent years, the concept of molecular skeletal editing has garnered widespread attention and has been significantly developed, providing new opportunities for the late-stage modification of bioactive molecules, the high-value transformation of bulk chemicals, and a revolution in the traditional fragment coupling strategies of chemical synthesis. Notable advancements in this field have focused on C-C bond cleavage and the remodeling of cyclic molecules, including ring expansion, ring contraction, and ring-opening reactions, thereby enriching the synthetic toolbox available to chemists. However, selective C-C bond transformation remains a formidable challenge, especially in the remodeling of complex molecules, due to the high bond dissociation energy and the difficulty in achieving precise selectivity control. Over the past few years, our group has made efforts to address these challenges. We have demonstrated the potential of cyclic molecule remodeling reactions as an efficient strategy for the synthesis and modification of complex molecules.Herein, we present two major thematic advancements achieved by our group, utilizing cascade activation and entropy-driven reconstruction strategies for molecular ring remodeling via C-C bond cleavage. These strategies are characterized by mild conditions, the accessibility of catalysts and reagents, and exceptional functional group compatibility, thereby emerging as novel approaches for molecular ring remodeling through atom-incorporation reactions mainly on nitrogenation, oxygenation, and halogenation to synthesize pharmaceuticals, natural products, and material molecules. (1) Ring expansion reactions: We developed novel reactions that enable the insertion of C-, N-, and O-containing units into molecular rings. These methodologies offer practical and efficient routes for synthesizing amides, amines, lactones, and nitrogen-containing heterocycles. (2) Ring-opening reactions: C-C bond cleavage in ring-opening reactions enables the efficient construction of distally difunctionalized molecular frameworks. By utilizing a transition metal catalysis and radical-mediated process, we have successfully achieved the cleavage of both C-C single bonds and C═C double bonds within molecular rings. Furthermore, we have tackled the highly challenging arene ring-opening (ARO) reaction, enabling the construction of stereoselective conjugated systems through the unsaturation liberation of aromatic systems. Mechanistic studies and DFT calculations have provided critical insights into these processes. We have also identified key intermediates involved in C-C bond cleavage, including benzyl azide, O-acetyl hydroxylamine, β-azido peroxyl radical, copper bisnitrene, and 2-nitrene indazole. These findings have deepened our understanding of the mechanisms and the entropy-driven reconstruction strategy, which has further promoted the discovery of related C-C bond transformations of acyclic substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信