{"title":"双超薄银膜透明电极半透明有机太阳能电池的光学模拟与调制","authors":"Guoping Luo, Meizhen Wang, Xuebin Li, Junchen Liao, Weiling Zhu","doi":"10.1002/solr.202400724","DOIUrl":null,"url":null,"abstract":"<p>\nThe advancement of semitransparent organic solar cells utilizing narrow bandgap donor and acceptor materials has progressed rapidly in recent years. These semitransparent devices exhibit high absorption in the near-infrared range and high transmission in the visible region, offering broad application potential. This research suggests employing dual ultrathin metal films as transparent electrodes to fabricate semitransparent photovoltaic devices. The investigation focuses on the spectral simulation and modulation of the transparent electrode structure, film thickness, optical coupling layer, and 1D photonic crystal utilizing the optical transfer matrix method. The primary goal of the integrated optical effects is to enhance the light absorption in the active layer while maintaining device visible transparency. Simulation results indicate the feasibility of a device structure consisting of Nb<sub>2</sub>O<sub>5</sub>/Ag/Nb<sub>2</sub>O<sub>5</sub>/PM6:BTP-eC9:L8-BO/MoO<sub>3</sub>/Ag/ZnSe/Na<sub>3</sub>AlF<sub>6</sub>/ZnSe, achieving an expected short-circuit current density (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mtext>sc</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$J_{\\text{sc}}$</annotation>\n </semantics></math>) of 17.10 mA cm<sup>−2</sup>, an average visible transmittance (AVT) of 50.40%, and a light utilization efficiency (LUE) of 5.49%. The incorporation of three nonperiodic dielectric layers shows the potential to further increase <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mtext>sc</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$J_{\\text{sc}}$</annotation>\n </semantics></math>, AVT, and LUE to 17.40 mA cm<sup>−2</sup>, 51.49%, and 5.71%, respectively. This study introduces a novel device structure that optimizes active layer absorption and visible transmittance, aiming to advance semitransparent photovoltaic devices.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 4","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Simulation and Modulation of Semitransparent Organic Solar Cells with Dual Ultrathin Ag Film Transparent Electrodes\",\"authors\":\"Guoping Luo, Meizhen Wang, Xuebin Li, Junchen Liao, Weiling Zhu\",\"doi\":\"10.1002/solr.202400724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nThe advancement of semitransparent organic solar cells utilizing narrow bandgap donor and acceptor materials has progressed rapidly in recent years. These semitransparent devices exhibit high absorption in the near-infrared range and high transmission in the visible region, offering broad application potential. This research suggests employing dual ultrathin metal films as transparent electrodes to fabricate semitransparent photovoltaic devices. The investigation focuses on the spectral simulation and modulation of the transparent electrode structure, film thickness, optical coupling layer, and 1D photonic crystal utilizing the optical transfer matrix method. The primary goal of the integrated optical effects is to enhance the light absorption in the active layer while maintaining device visible transparency. Simulation results indicate the feasibility of a device structure consisting of Nb<sub>2</sub>O<sub>5</sub>/Ag/Nb<sub>2</sub>O<sub>5</sub>/PM6:BTP-eC9:L8-BO/MoO<sub>3</sub>/Ag/ZnSe/Na<sub>3</sub>AlF<sub>6</sub>/ZnSe, achieving an expected short-circuit current density (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>J</mi>\\n <mrow>\\n <mtext>sc</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$J_{\\\\text{sc}}$</annotation>\\n </semantics></math>) of 17.10 mA cm<sup>−2</sup>, an average visible transmittance (AVT) of 50.40%, and a light utilization efficiency (LUE) of 5.49%. The incorporation of three nonperiodic dielectric layers shows the potential to further increase <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>J</mi>\\n <mrow>\\n <mtext>sc</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$J_{\\\\text{sc}}$</annotation>\\n </semantics></math>, AVT, and LUE to 17.40 mA cm<sup>−2</sup>, 51.49%, and 5.71%, respectively. This study introduces a novel device structure that optimizes active layer absorption and visible transmittance, aiming to advance semitransparent photovoltaic devices.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400724\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400724","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
利用窄带隙供体和受体材料制备的半透明有机太阳能电池近年来进展迅速。这些半透明器件在近红外波段具有高吸收率,在可见光波段具有高透射率,具有广阔的应用潜力。本研究建议采用双超薄金属薄膜作为透明电极,制作半透明光伏器件。利用光学传递矩阵方法对透明电极结构、薄膜厚度、光学耦合层和一维光子晶体进行了光谱模拟和调制。集成光学效应的主要目标是增强有源层的光吸收,同时保持器件的可见透明度。仿真结果表明,由Nb2O5/Ag/Nb2O5/PM6:BTP-eC9:L8-BO/MoO3/Ag/ZnSe/Na3AlF6/ZnSe组成的器件结构的可行性,实现了预期的短路电流密度(J sc $J_{\text{sc}}$)为17.10 mA cm−2,平均可见光透过率(AVT)为50.40%。光利用效率(LUE)为5.49%。三层非周期性介电层的掺入使jsc $J_{\text{sc}}$、AVT和LUE分别提高到17.40 mA cm−2、51.49%和5.71%。本研究提出了一种优化有源层吸收和可见光透过率的新型器件结构,旨在推进半透明光伏器件的发展。
Optical Simulation and Modulation of Semitransparent Organic Solar Cells with Dual Ultrathin Ag Film Transparent Electrodes
The advancement of semitransparent organic solar cells utilizing narrow bandgap donor and acceptor materials has progressed rapidly in recent years. These semitransparent devices exhibit high absorption in the near-infrared range and high transmission in the visible region, offering broad application potential. This research suggests employing dual ultrathin metal films as transparent electrodes to fabricate semitransparent photovoltaic devices. The investigation focuses on the spectral simulation and modulation of the transparent electrode structure, film thickness, optical coupling layer, and 1D photonic crystal utilizing the optical transfer matrix method. The primary goal of the integrated optical effects is to enhance the light absorption in the active layer while maintaining device visible transparency. Simulation results indicate the feasibility of a device structure consisting of Nb2O5/Ag/Nb2O5/PM6:BTP-eC9:L8-BO/MoO3/Ag/ZnSe/Na3AlF6/ZnSe, achieving an expected short-circuit current density () of 17.10 mA cm−2, an average visible transmittance (AVT) of 50.40%, and a light utilization efficiency (LUE) of 5.49%. The incorporation of three nonperiodic dielectric layers shows the potential to further increase , AVT, and LUE to 17.40 mA cm−2, 51.49%, and 5.71%, respectively. This study introduces a novel device structure that optimizes active layer absorption and visible transmittance, aiming to advance semitransparent photovoltaic devices.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.