用于无线体域网络的三波段可穿戴SIW超表面纺织天线

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Guo-Ping Gao, Li-Jun Jin, Jin-Ming Bai, Ge Ma, Wen-Di Guo, Bin Hu
{"title":"用于无线体域网络的三波段可穿戴SIW超表面纺织天线","authors":"Guo-Ping Gao,&nbsp;Li-Jun Jin,&nbsp;Jin-Ming Bai,&nbsp;Ge Ma,&nbsp;Wen-Di Guo,&nbsp;Bin Hu","doi":"10.1002/mop.70149","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this letter, a tri-band on-body/off-body wearable substrate integrated waveguide (SIW) textile antenna operating in the World Interoperability for Microwave Access (WiMAX) band (2.3–2.69 GHz; 3.3–3.8 GHz) and WLAN band (5.15–5.825 GHz) is proposed. The antenna uses a SIW resonant cavity, which allows multiple frequency points to be excited to achieve multi-frequency characteristics, and a layer of metasurface (MS) structure is added to adjust the resonant frequency points and impedance bandwidth. The final results show that the antenna performance is good, the measured results are consistent with the simulated results, the peak gain is 9.27 dBi, the antenna creates the omnidirectional and unidirectional radiation patterns very well, in addition, its wearable performance is good, in the human body and the free space measured data is basically the same, using the three-layer human body tissue model to calculate the antenna's Specific Absorption Rate (SAR) value, and the calculation result is lower than the upper limit of the United States and the European Union standards, These characteristics indicate that the antenna can be used in wearable systems.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tri-Band Wearable SIW Textile Antenna With Metasurface for Wireless Body Area Network\",\"authors\":\"Guo-Ping Gao,&nbsp;Li-Jun Jin,&nbsp;Jin-Ming Bai,&nbsp;Ge Ma,&nbsp;Wen-Di Guo,&nbsp;Bin Hu\",\"doi\":\"10.1002/mop.70149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this letter, a tri-band on-body/off-body wearable substrate integrated waveguide (SIW) textile antenna operating in the World Interoperability for Microwave Access (WiMAX) band (2.3–2.69 GHz; 3.3–3.8 GHz) and WLAN band (5.15–5.825 GHz) is proposed. The antenna uses a SIW resonant cavity, which allows multiple frequency points to be excited to achieve multi-frequency characteristics, and a layer of metasurface (MS) structure is added to adjust the resonant frequency points and impedance bandwidth. The final results show that the antenna performance is good, the measured results are consistent with the simulated results, the peak gain is 9.27 dBi, the antenna creates the omnidirectional and unidirectional radiation patterns very well, in addition, its wearable performance is good, in the human body and the free space measured data is basically the same, using the three-layer human body tissue model to calculate the antenna's Specific Absorption Rate (SAR) value, and the calculation result is lower than the upper limit of the United States and the European Union standards, These characteristics indicate that the antenna can be used in wearable systems.</p>\\n </div>\",\"PeriodicalId\":18562,\"journal\":{\"name\":\"Microwave and Optical Technology Letters\",\"volume\":\"67 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microwave and Optical Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mop.70149\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,在世界微波接入(WiMAX)频段(2.3-2.69 GHz)上运行的三波段体上/体外可穿戴衬底集成波导(SIW)纺织天线;3.3 ~ 3.8 GHz)和WLAN频段(5.15 ~ 5.825 GHz)。该天线采用SIW谐振腔,可以激发多个频点实现多频特性,并增加一层超表面(MS)结构来调节谐振频点和阻抗带宽。最终结果表明,该天线性能良好,实测结果与仿真结果一致,峰值增益为9.27 dBi,该天线能很好地产生全向和单向辐射方向图,此外,其穿戴性能良好,在人体和自由空间的实测数据基本相同,利用三层人体组织模型计算出该天线的比吸收率(SAR)值。计算结果均低于美国和欧盟标准的上限,这些特点表明该天线可用于可穿戴系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tri-Band Wearable SIW Textile Antenna With Metasurface for Wireless Body Area Network

In this letter, a tri-band on-body/off-body wearable substrate integrated waveguide (SIW) textile antenna operating in the World Interoperability for Microwave Access (WiMAX) band (2.3–2.69 GHz; 3.3–3.8 GHz) and WLAN band (5.15–5.825 GHz) is proposed. The antenna uses a SIW resonant cavity, which allows multiple frequency points to be excited to achieve multi-frequency characteristics, and a layer of metasurface (MS) structure is added to adjust the resonant frequency points and impedance bandwidth. The final results show that the antenna performance is good, the measured results are consistent with the simulated results, the peak gain is 9.27 dBi, the antenna creates the omnidirectional and unidirectional radiation patterns very well, in addition, its wearable performance is good, in the human body and the free space measured data is basically the same, using the three-layer human body tissue model to calculate the antenna's Specific Absorption Rate (SAR) value, and the calculation result is lower than the upper limit of the United States and the European Union standards, These characteristics indicate that the antenna can be used in wearable systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信