下载PDF
{"title":"无界凸集中的willmore型不等式","authors":"Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang","doi":"10.1112/jlms.70105","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the following Willmore-type inequality: on an unbounded closed convex set <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$K\\subset \\mathbb {R}^{n+1}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$(n\\geqslant 2$</annotation>\n </semantics></math>), for any embedded hypersurface <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mo>⊂</mo>\n <mi>K</mi>\n </mrow>\n <annotation>${\\Sigma }\\subset K$</annotation>\n </semantics></math> with boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n <mo>⊂</mo>\n <mi>∂</mi>\n <mi>K</mi>\n </mrow>\n <annotation>$\\partial {\\Sigma }\\subset \\partial K$</annotation>\n </semantics></math> satisfying a certain contact angle condition, there holds\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70105","citationCount":"0","resultStr":"{\"title\":\"Willmore-type inequality in unbounded convex sets\",\"authors\":\"Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang\",\"doi\":\"10.1112/jlms.70105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the following Willmore-type inequality: on an unbounded closed convex set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$K\\\\subset \\\\mathbb {R}^{n+1}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$(n\\\\geqslant 2$</annotation>\\n </semantics></math>), for any embedded hypersurface <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mo>⊂</mo>\\n <mi>K</mi>\\n </mrow>\\n <annotation>${\\\\Sigma }\\\\subset K$</annotation>\\n </semantics></math> with boundary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>Σ</mi>\\n <mo>⊂</mo>\\n <mi>∂</mi>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$\\\\partial {\\\\Sigma }\\\\subset \\\\partial K$</annotation>\\n </semantics></math> satisfying a certain contact angle condition, there holds\\n\\n </p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70105\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用