具有正常数边界平均曲率的负常数标量曲率共形度量的先验估计

IF 1 2区 数学 Q1 MATHEMATICS
Sérgio Almaraz, Shaodong Wang
{"title":"具有正常数边界平均曲率的负常数标量曲率共形度量的先验估计","authors":"Sérgio Almaraz,&nbsp;Shaodong Wang","doi":"10.1112/jlms.70109","DOIUrl":null,"url":null,"abstract":"<p>On a compact Riemannian manifold with boundary, we study the set of conformal metrics of negative constant scalar curvature in the interior and positive constant mean curvature on the boundary. Working in the case of positive Yamabe conformal invariant, we prove that this set is a priori bounded in the three-dimensional case and in the locally conformally flat with umbilical boundary case in any dimension not less than three.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori estimates for negative constant scalar curvature conformal metrics with positive constant boundary mean curvature\",\"authors\":\"Sérgio Almaraz,&nbsp;Shaodong Wang\",\"doi\":\"10.1112/jlms.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On a compact Riemannian manifold with boundary, we study the set of conformal metrics of negative constant scalar curvature in the interior and positive constant mean curvature on the boundary. Working in the case of positive Yamabe conformal invariant, we prove that this set is a priori bounded in the three-dimensional case and in the locally conformally flat with umbilical boundary case in any dimension not less than three.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70109\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70109","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在具有边界的紧黎曼流形上,研究了内部为负常数标量曲率,边界为正常数平均曲率的共形度量集。在正Yamabe共形不变量的情况下,证明了该集合在不小于3维的三维情况下是先验有界的,在带脐边界的局部共形平面情况下是先验有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori estimates for negative constant scalar curvature conformal metrics with positive constant boundary mean curvature

On a compact Riemannian manifold with boundary, we study the set of conformal metrics of negative constant scalar curvature in the interior and positive constant mean curvature on the boundary. Working in the case of positive Yamabe conformal invariant, we prove that this set is a priori bounded in the three-dimensional case and in the locally conformally flat with umbilical boundary case in any dimension not less than three.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信