{"title":"在双曲全函数的直接吸引盆的边界上","authors":"Walter Bergweiler, Jie Ding","doi":"10.1112/jlms.70085","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> be a transcendental entire function of finite order which has an attracting periodic point <span></span><math>\n <semantics>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n <annotation>$z_0$</annotation>\n </semantics></math> of period at least 2. Suppose that the set of singularities of the inverse of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is finite and contained in the component <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> of the Fatou set that contains <span></span><math>\n <semantics>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n <annotation>$z_0$</annotation>\n </semantics></math>. Under an additional hypothesis, we show that the intersection of <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>U</mi>\n </mrow>\n <annotation>$\\partial U$</annotation>\n </semantics></math> with the escaping set of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> has Hausdorff dimension 1. The additional hypothesis is satisfied for example if <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> has the form <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msubsup>\n <mo>∫</mo>\n <mn>0</mn>\n <mi>z</mi>\n </msubsup>\n <mi>p</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>e</mi>\n <mrow>\n <mi>q</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>t</mi>\n <mo>+</mo>\n <mi>c</mi>\n </mrow>\n <annotation>$f(z)=\\int _0^z p(t)\\text{e}^{q(t)}dt+c$</annotation>\n </semantics></math> with polynomials <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> and a constant <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math>. This generalizes a result of Barański, Karpińska, and Zdunik dealing with the case <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>λ</mi>\n <msup>\n <mi>e</mi>\n <mi>z</mi>\n </msup>\n </mrow>\n <annotation>$f(z)=\\lambda \\text{e}^z$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70085","citationCount":"0","resultStr":"{\"title\":\"On the boundary of an immediate attracting basin of a hyperbolic entire function\",\"authors\":\"Walter Bergweiler, Jie Ding\",\"doi\":\"10.1112/jlms.70085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> be a transcendental entire function of finite order which has an attracting periodic point <span></span><math>\\n <semantics>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$z_0$</annotation>\\n </semantics></math> of period at least 2. Suppose that the set of singularities of the inverse of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is finite and contained in the component <span></span><math>\\n <semantics>\\n <mi>U</mi>\\n <annotation>$U$</annotation>\\n </semantics></math> of the Fatou set that contains <span></span><math>\\n <semantics>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$z_0$</annotation>\\n </semantics></math>. Under an additional hypothesis, we show that the intersection of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>U</mi>\\n </mrow>\\n <annotation>$\\\\partial U$</annotation>\\n </semantics></math> with the escaping set of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> has Hausdorff dimension 1. The additional hypothesis is satisfied for example if <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> has the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msubsup>\\n <mo>∫</mo>\\n <mn>0</mn>\\n <mi>z</mi>\\n </msubsup>\\n <mi>p</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mi>q</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <mi>t</mi>\\n <mo>+</mo>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$f(z)=\\\\int _0^z p(t)\\\\text{e}^{q(t)}dt+c$</annotation>\\n </semantics></math> with polynomials <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math> and a constant <span></span><math>\\n <semantics>\\n <mi>c</mi>\\n <annotation>$c$</annotation>\\n </semantics></math>. This generalizes a result of Barański, Karpińska, and Zdunik dealing with the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>λ</mi>\\n <msup>\\n <mi>e</mi>\\n <mi>z</mi>\\n </msup>\\n </mrow>\\n <annotation>$f(z)=\\\\lambda \\\\text{e}^z$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70085\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70085","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设f $f$是一个有限阶的超越整函数,它有一个吸引周期点z0 $z_0$,周期至少为2。假设f $f$逆的奇异集是有限的,并且包含在Fatou集合的分量U $U$中,该集合包含z0 $z_0$。在另一个假设下,我们证明∂U $\partial U$与转义集f $f$的交集具有豪斯多夫维数1。附加假设得到满足,例如f $f$的形式为f (z) =∫0 zp(t) e q (t) d t + c $f(z)=\int _0^z p(t)\text{e}^{q(t)}dt+c$ with多项式p $p$和q $q$和常数c $c$。这推广了Barański、Karpińska和Zdunik处理f (z) = λ e z $f(z)=\lambda \text{e}^z$情况的结果。
On the boundary of an immediate attracting basin of a hyperbolic entire function
Let be a transcendental entire function of finite order which has an attracting periodic point of period at least 2. Suppose that the set of singularities of the inverse of is finite and contained in the component of the Fatou set that contains . Under an additional hypothesis, we show that the intersection of with the escaping set of has Hausdorff dimension 1. The additional hypothesis is satisfied for example if has the form with polynomials and and a constant . This generalizes a result of Barański, Karpińska, and Zdunik dealing with the case .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.