基于物理信息神经网络的直流阻塞下可再生能源站暂态过电压幅值预测方法

IF 2.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Guangyao Wang, Jun Liu, Jiacheng Liu, Xiaoming Liu, Tao Ding, Xianbo Ke, Chong Ren
{"title":"基于物理信息神经网络的直流阻塞下可再生能源站暂态过电压幅值预测方法","authors":"Guangyao Wang,&nbsp;Jun Liu,&nbsp;Jiacheng Liu,&nbsp;Xiaoming Liu,&nbsp;Tao Ding,&nbsp;Xianbo Ke,&nbsp;Chong Ren","doi":"10.1049/gtd2.70030","DOIUrl":null,"url":null,"abstract":"<p>Large-scale power systems typically require long-distance transmission of electrical energy, and high-voltage direct current (HVDC) technology is a commonly used high-capacity means of connecting power sources to load centres. When a blocking fault occurs in an HVDC transmission system based on line commutated converters (LCC), the sending-end system is prone to transient overvoltage (TOV) risks. This is especially severe in systems with large-scale renewable energy integration, where excessive TOV can lead to widespread disconnection of renewable energy units, seriously threatening the safe and stable operation of the power system. Therefore, predicting the TOV magnitude in renewable energy stations (RES) under DC blocking (DCB) scenarios is of great importance for maintaining system stability and facilitating emergency control decisions. This paper first derives an analytical expression for the TOV magnitude at critical nodes in the system caused by DCB faults. Subsequently, an analytical formula is developed to characterize the relationship between the multiple renewable energy stations short circuit ratio (MRSCR) and the transient voltage rise (TVR) at the point of common coupling (PCC) of RES. Based on this, a physics-informed neural network-based transient overvoltage magnitude prediction (PINN-TOMP) method for RES under DCB scenarios is proposed. The method introduces a regularization term for MRSCR into the loss function to ensure that the PINN model adheres to the physical laws and constraints governing the power system, thereby enhancing the prediction accuracy. Finally, the proposed method was tested on a real regional power system in China, and the results validated its effectiveness.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70030","citationCount":"0","resultStr":"{\"title\":\"A Physics-Informed Neural Network-Based Transient Overvoltage Magnitude Prediction Method for Renewable Energy Stations Under DC Blocking Scenarios\",\"authors\":\"Guangyao Wang,&nbsp;Jun Liu,&nbsp;Jiacheng Liu,&nbsp;Xiaoming Liu,&nbsp;Tao Ding,&nbsp;Xianbo Ke,&nbsp;Chong Ren\",\"doi\":\"10.1049/gtd2.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-scale power systems typically require long-distance transmission of electrical energy, and high-voltage direct current (HVDC) technology is a commonly used high-capacity means of connecting power sources to load centres. When a blocking fault occurs in an HVDC transmission system based on line commutated converters (LCC), the sending-end system is prone to transient overvoltage (TOV) risks. This is especially severe in systems with large-scale renewable energy integration, where excessive TOV can lead to widespread disconnection of renewable energy units, seriously threatening the safe and stable operation of the power system. Therefore, predicting the TOV magnitude in renewable energy stations (RES) under DC blocking (DCB) scenarios is of great importance for maintaining system stability and facilitating emergency control decisions. This paper first derives an analytical expression for the TOV magnitude at critical nodes in the system caused by DCB faults. Subsequently, an analytical formula is developed to characterize the relationship between the multiple renewable energy stations short circuit ratio (MRSCR) and the transient voltage rise (TVR) at the point of common coupling (PCC) of RES. Based on this, a physics-informed neural network-based transient overvoltage magnitude prediction (PINN-TOMP) method for RES under DCB scenarios is proposed. The method introduces a regularization term for MRSCR into the loss function to ensure that the PINN model adheres to the physical laws and constraints governing the power system, thereby enhancing the prediction accuracy. Finally, the proposed method was tested on a real regional power system in China, and the results validated its effectiveness.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70030\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大型电力系统通常需要远距离传输电能,高压直流(HVDC)技术是一种常用的将电源连接到负载中心的大容量手段。当基于线路换向变流器的直流输电系统发生阻塞故障时,发送端系统容易出现暂态过电压(TOV)风险。这在大规模可再生能源并网的系统中尤为严重,过大的TOV会导致可再生能源机组大面积断网,严重威胁到电力系统的安全稳定运行。因此,预测直流阻塞(DCB)情景下可再生能源站(RES)的TOV大小对于维护系统稳定和促进应急控制决策具有重要意义。本文首先推导了由DCB故障引起的系统关键节点TOV值的解析表达式。在此基础上,提出了一种基于物理信息神经网络的DCB情景下可再生能源电网暂态过电压幅值预测方法(PINN-TOMP)。该方法在损失函数中引入MRSCR的正则化项,保证了PINN模型符合电力系统的物理规律和约束条件,从而提高了预测精度。最后,在中国某区域电力系统上进行了测试,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Physics-Informed Neural Network-Based Transient Overvoltage Magnitude Prediction Method for Renewable Energy Stations Under DC Blocking Scenarios

A Physics-Informed Neural Network-Based Transient Overvoltage Magnitude Prediction Method for Renewable Energy Stations Under DC Blocking Scenarios

Large-scale power systems typically require long-distance transmission of electrical energy, and high-voltage direct current (HVDC) technology is a commonly used high-capacity means of connecting power sources to load centres. When a blocking fault occurs in an HVDC transmission system based on line commutated converters (LCC), the sending-end system is prone to transient overvoltage (TOV) risks. This is especially severe in systems with large-scale renewable energy integration, where excessive TOV can lead to widespread disconnection of renewable energy units, seriously threatening the safe and stable operation of the power system. Therefore, predicting the TOV magnitude in renewable energy stations (RES) under DC blocking (DCB) scenarios is of great importance for maintaining system stability and facilitating emergency control decisions. This paper first derives an analytical expression for the TOV magnitude at critical nodes in the system caused by DCB faults. Subsequently, an analytical formula is developed to characterize the relationship between the multiple renewable energy stations short circuit ratio (MRSCR) and the transient voltage rise (TVR) at the point of common coupling (PCC) of RES. Based on this, a physics-informed neural network-based transient overvoltage magnitude prediction (PINN-TOMP) method for RES under DCB scenarios is proposed. The method introduces a regularization term for MRSCR into the loss function to ensure that the PINN model adheres to the physical laws and constraints governing the power system, thereby enhancing the prediction accuracy. Finally, the proposed method was tested on a real regional power system in China, and the results validated its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信