Qi Li, Huaijin Ma, Jiawei Xu, Jianjun Zhao, Lei Gao, Xiang Jin
{"title":"dy掺杂La0.7Ca0.3MnO3的磁性和磁热效应及相变临界行为","authors":"Qi Li, Huaijin Ma, Jiawei Xu, Jianjun Zhao, Lei Gao, Xiang Jin","doi":"10.1007/s10909-025-03272-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, polycrystalline samples of La<sub>0.7</sub>Ca<sub>0.3-<i>x</i></sub>Dy<sub><i>x</i></sub>MnO<sub>3</sub> (<i>x</i> = 0, 0.15) were synthesized via the solid-state reaction method. Their structures, magnetic properties, magnetocaloric effects, and critical behaviors associated with phase transitions were systematically investigated. All samples exhibited structures belonging to the <i>Pbnm</i> space group, characterized by precise compositions and good single-phase. The samples underwent paramagnetic-ferromagnetic (PM-FM) phase transitions at Curie temperatures (<i>T</i><sub>C</sub>) of approximately 244 K for <i>x</i> = 0 and 132 K for <i>x</i> = 0.15. The incorporation of Dy significantly broadened the half height wide temperature range (Δ<i>T</i><sub>FWHM</sub>) from 39.36 K (<i>x</i> = 0) to 121.92 K (<i>x</i> = 0.15). Consequently, the relative cooling capacity (<i>RCP</i>) of the samples was markedly increased, rising from 369.76 J·kg<sup>−1</sup> (<i>x</i> = 0) to 721.09 J·kg<sup>−1</sup> (<i>x</i> = 0.15). Furthermore, upon doping with <i>x</i> = 0.15, the phase transition type shifted from the first-order phase transition (FOPT) of the parent phase to a second-order phase transition (SOPT). This shift is attributed to the substitution of some Ca<sup>2+</sup> ions by Dy<sup>3+</sup>, which weakened the double-exchange interaction and altered the phase transition type. Analysis of the critical behavior using the Kouvel-Fisher (K-F) and Modified Arrott plot (MAP) methods revealed that the critical features of the phase transition in La<sub>0.7</sub>Ca<sub>0.15</sub>Dy<sub>0.15</sub>MnO<sub>3</sub> are better described by a Mean-Field Model with long-range ordering. Therefore, this study not only enriches our understanding of the physical properties of this class of materials but also enhances their potential for magnetic refrigeration (MR) applications.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"218 5-6","pages":"358 - 382"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic and Magnetocaloric Effects and Phase Transition Critical Behavior of Dy-Doped La0.7Ca0.3MnO3\",\"authors\":\"Qi Li, Huaijin Ma, Jiawei Xu, Jianjun Zhao, Lei Gao, Xiang Jin\",\"doi\":\"10.1007/s10909-025-03272-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, polycrystalline samples of La<sub>0.7</sub>Ca<sub>0.3-<i>x</i></sub>Dy<sub><i>x</i></sub>MnO<sub>3</sub> (<i>x</i> = 0, 0.15) were synthesized via the solid-state reaction method. Their structures, magnetic properties, magnetocaloric effects, and critical behaviors associated with phase transitions were systematically investigated. All samples exhibited structures belonging to the <i>Pbnm</i> space group, characterized by precise compositions and good single-phase. The samples underwent paramagnetic-ferromagnetic (PM-FM) phase transitions at Curie temperatures (<i>T</i><sub>C</sub>) of approximately 244 K for <i>x</i> = 0 and 132 K for <i>x</i> = 0.15. The incorporation of Dy significantly broadened the half height wide temperature range (Δ<i>T</i><sub>FWHM</sub>) from 39.36 K (<i>x</i> = 0) to 121.92 K (<i>x</i> = 0.15). Consequently, the relative cooling capacity (<i>RCP</i>) of the samples was markedly increased, rising from 369.76 J·kg<sup>−1</sup> (<i>x</i> = 0) to 721.09 J·kg<sup>−1</sup> (<i>x</i> = 0.15). Furthermore, upon doping with <i>x</i> = 0.15, the phase transition type shifted from the first-order phase transition (FOPT) of the parent phase to a second-order phase transition (SOPT). This shift is attributed to the substitution of some Ca<sup>2+</sup> ions by Dy<sup>3+</sup>, which weakened the double-exchange interaction and altered the phase transition type. Analysis of the critical behavior using the Kouvel-Fisher (K-F) and Modified Arrott plot (MAP) methods revealed that the critical features of the phase transition in La<sub>0.7</sub>Ca<sub>0.15</sub>Dy<sub>0.15</sub>MnO<sub>3</sub> are better described by a Mean-Field Model with long-range ordering. Therefore, this study not only enriches our understanding of the physical properties of this class of materials but also enhances their potential for magnetic refrigeration (MR) applications.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"218 5-6\",\"pages\":\"358 - 382\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-025-03272-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03272-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用固相反应法制备了La0.7Ca0.3-xDyxMnO3 (x = 0,0.15)的多晶样品。系统地研究了它们的结构、磁性能、磁热效应以及与相变相关的临界行为。所有样品的结构都属于Pbnm空间群,具有成分精确、单相性好等特点。样品在居里温度(TC)下发生顺磁-铁磁相变(PM-FM), x = 0时为244k, x = 0.15时为132k。Dy的加入使半高宽温度范围(ΔTFWHM)从39.36 K (x = 0)扩展到121.92 K (x = 0.15)。因此,样品的相对制冷量(RCP)从369.76 J·kg - 1 (x = 0)增加到721.09 J·kg - 1 (x = 0.15)。当掺杂x = 0.15时,相变类型由母相的一级相变(FOPT)转变为二级相变(SOPT)。这种转变是由于一些Ca2+离子被Dy3+取代,这削弱了双交换作用,改变了相变类型。利用Kouvel-Fisher (K-F)和Modified Arrott plot (MAP)方法对La0.7Ca0.15Dy0.15MnO3的临界行为进行了分析,结果表明La0.7Ca0.15Dy0.15MnO3的相变临界特征可以用长时间有序的平均场模型来描述。因此,这项研究不仅丰富了我们对这类材料物理性质的理解,而且增强了它们在磁制冷(MR)应用中的潜力。
Magnetic and Magnetocaloric Effects and Phase Transition Critical Behavior of Dy-Doped La0.7Ca0.3MnO3
In this study, polycrystalline samples of La0.7Ca0.3-xDyxMnO3 (x = 0, 0.15) were synthesized via the solid-state reaction method. Their structures, magnetic properties, magnetocaloric effects, and critical behaviors associated with phase transitions were systematically investigated. All samples exhibited structures belonging to the Pbnm space group, characterized by precise compositions and good single-phase. The samples underwent paramagnetic-ferromagnetic (PM-FM) phase transitions at Curie temperatures (TC) of approximately 244 K for x = 0 and 132 K for x = 0.15. The incorporation of Dy significantly broadened the half height wide temperature range (ΔTFWHM) from 39.36 K (x = 0) to 121.92 K (x = 0.15). Consequently, the relative cooling capacity (RCP) of the samples was markedly increased, rising from 369.76 J·kg−1 (x = 0) to 721.09 J·kg−1 (x = 0.15). Furthermore, upon doping with x = 0.15, the phase transition type shifted from the first-order phase transition (FOPT) of the parent phase to a second-order phase transition (SOPT). This shift is attributed to the substitution of some Ca2+ ions by Dy3+, which weakened the double-exchange interaction and altered the phase transition type. Analysis of the critical behavior using the Kouvel-Fisher (K-F) and Modified Arrott plot (MAP) methods revealed that the critical features of the phase transition in La0.7Ca0.15Dy0.15MnO3 are better described by a Mean-Field Model with long-range ordering. Therefore, this study not only enriches our understanding of the physical properties of this class of materials but also enhances their potential for magnetic refrigeration (MR) applications.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.