碳纳米管作为多组分反应合成杂环化合物的多相催化剂

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ramin Javahershenas, Vadim A. Soloshonok, Karel D. Klika, Peter J. Jervis
{"title":"碳纳米管作为多组分反应合成杂环化合物的多相催化剂","authors":"Ramin Javahershenas,&nbsp;Vadim A. Soloshonok,&nbsp;Karel D. Klika,&nbsp;Peter J. Jervis","doi":"10.1007/s42823-024-00818-x","DOIUrl":null,"url":null,"abstract":"<div><p>Heterocycles are an important class of compounds that are widely used in pharmaceuticals, agrochemicals, dyes, and materials. Multicomponent reactions (MCRs) offer efficient synthetic routes for producing these complex structures. The search for effective and sustainable catalytic processes in organic synthesis has led to the exploration of various nanomaterials as potential catalysts. To this end, carbon nanotubes (CNTs) have recently emerged as promising heterogeneous catalysts for the MCR synthesis of heterocycles due to their unique properties, which include high surface area and reactivity, tunable surface chemistry, excellent electrical conductivity, recyclability, and exceptional thermal and chemical stability. This review provides a comprehensive analysis and overview of the use of CNTs as catalysts for synthesizing heterocycles via MCRs and their advantages.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 1","pages":"75 - 105"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanotubes as heterogeneous catalysts for the multicomponent reaction synthesis of heterocycles\",\"authors\":\"Ramin Javahershenas,&nbsp;Vadim A. Soloshonok,&nbsp;Karel D. Klika,&nbsp;Peter J. Jervis\",\"doi\":\"10.1007/s42823-024-00818-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heterocycles are an important class of compounds that are widely used in pharmaceuticals, agrochemicals, dyes, and materials. Multicomponent reactions (MCRs) offer efficient synthetic routes for producing these complex structures. The search for effective and sustainable catalytic processes in organic synthesis has led to the exploration of various nanomaterials as potential catalysts. To this end, carbon nanotubes (CNTs) have recently emerged as promising heterogeneous catalysts for the MCR synthesis of heterocycles due to their unique properties, which include high surface area and reactivity, tunable surface chemistry, excellent electrical conductivity, recyclability, and exceptional thermal and chemical stability. This review provides a comprehensive analysis and overview of the use of CNTs as catalysts for synthesizing heterocycles via MCRs and their advantages.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 1\",\"pages\":\"75 - 105\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00818-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00818-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

杂环化合物是一类重要的化合物,广泛应用于医药、农用化学品、染料和材料等领域。多组分反应(mcr)为合成这些复杂结构提供了有效的途径。在有机合成中寻找有效和可持续的催化过程导致了各种纳米材料作为潜在催化剂的探索。为此,碳纳米管(CNTs)由于其独特的性质,包括高表面积和反应活性、可调节的表面化学、优异的导电性、可回收性以及优异的热稳定性和化学稳定性,最近成为MCR合成杂环的有前途的多相催化剂。本文全面分析和综述了碳纳米管作为催化剂在mcr合成杂环化合物中的应用及其优势。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon nanotubes as heterogeneous catalysts for the multicomponent reaction synthesis of heterocycles

Heterocycles are an important class of compounds that are widely used in pharmaceuticals, agrochemicals, dyes, and materials. Multicomponent reactions (MCRs) offer efficient synthetic routes for producing these complex structures. The search for effective and sustainable catalytic processes in organic synthesis has led to the exploration of various nanomaterials as potential catalysts. To this end, carbon nanotubes (CNTs) have recently emerged as promising heterogeneous catalysts for the MCR synthesis of heterocycles due to their unique properties, which include high surface area and reactivity, tunable surface chemistry, excellent electrical conductivity, recyclability, and exceptional thermal and chemical stability. This review provides a comprehensive analysis and overview of the use of CNTs as catalysts for synthesizing heterocycles via MCRs and their advantages.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信