Dongki Kim, Chaehun Lim, Seongjae Myeong, Eunseon Chae, Bo Kyoung Kim, Young-Seak Lee
{"title":"氧氟化提高MWCNT导电材料分散性对锂离子电池SiOx/ c基电极电化学性能的影响","authors":"Dongki Kim, Chaehun Lim, Seongjae Myeong, Eunseon Chae, Bo Kyoung Kim, Young-Seak Lee","doi":"10.1007/s42823-024-00828-9","DOIUrl":null,"url":null,"abstract":"<div><p>Oxyfluorination treatment was used to enhance the electrochemical properties of SiOx/C-based lithium-ion battery anode materials by improving the dispersibility of multi-walled carbon nanotubes, which are conductive materials. The dispersibility, chemical, and morphological characteristics of the oxyfluorinated carbon nanotubes were confirmed through various analyses. In addition, the effect of oxyfluorination was analyzed by a lithium-ion battery performance test, and the discharge capacity and cycling stability were significantly improved. The introduction of oxygen functional groups onto the surface of the carbon nanotubes improved their dispersibility. The fluorine functional groups also acted as catalysts for the introduction of these oxygen functional groups onto the surface and improved the cycling stability by forming a LiF-based solid electrolyte interphase layer. The high discharge capacity and improved cycling stability of these lithium-ion batteries were attributed to the enhanced dispersibility of carbon nanotubes induced by oxyfluorination and the resulting enhancement of the 3D network in the anode material promoting the movement of lithium ions and electrons.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 1","pages":"373 - 381"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of improved dispersibility of an MWCNT conductive material by oxyfluorination on the electrochemical performance of SiOx/C-based electrodes for lithium-ion batteries\",\"authors\":\"Dongki Kim, Chaehun Lim, Seongjae Myeong, Eunseon Chae, Bo Kyoung Kim, Young-Seak Lee\",\"doi\":\"10.1007/s42823-024-00828-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oxyfluorination treatment was used to enhance the electrochemical properties of SiOx/C-based lithium-ion battery anode materials by improving the dispersibility of multi-walled carbon nanotubes, which are conductive materials. The dispersibility, chemical, and morphological characteristics of the oxyfluorinated carbon nanotubes were confirmed through various analyses. In addition, the effect of oxyfluorination was analyzed by a lithium-ion battery performance test, and the discharge capacity and cycling stability were significantly improved. The introduction of oxygen functional groups onto the surface of the carbon nanotubes improved their dispersibility. The fluorine functional groups also acted as catalysts for the introduction of these oxygen functional groups onto the surface and improved the cycling stability by forming a LiF-based solid electrolyte interphase layer. The high discharge capacity and improved cycling stability of these lithium-ion batteries were attributed to the enhanced dispersibility of carbon nanotubes induced by oxyfluorination and the resulting enhancement of the 3D network in the anode material promoting the movement of lithium ions and electrons.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 1\",\"pages\":\"373 - 381\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00828-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00828-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of improved dispersibility of an MWCNT conductive material by oxyfluorination on the electrochemical performance of SiOx/C-based electrodes for lithium-ion batteries
Oxyfluorination treatment was used to enhance the electrochemical properties of SiOx/C-based lithium-ion battery anode materials by improving the dispersibility of multi-walled carbon nanotubes, which are conductive materials. The dispersibility, chemical, and morphological characteristics of the oxyfluorinated carbon nanotubes were confirmed through various analyses. In addition, the effect of oxyfluorination was analyzed by a lithium-ion battery performance test, and the discharge capacity and cycling stability were significantly improved. The introduction of oxygen functional groups onto the surface of the carbon nanotubes improved their dispersibility. The fluorine functional groups also acted as catalysts for the introduction of these oxygen functional groups onto the surface and improved the cycling stability by forming a LiF-based solid electrolyte interphase layer. The high discharge capacity and improved cycling stability of these lithium-ion batteries were attributed to the enhanced dispersibility of carbon nanotubes induced by oxyfluorination and the resulting enhancement of the 3D network in the anode material promoting the movement of lithium ions and electrons.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.