单分子光电器件的高效计算模型

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Alberto Bottacin, Fabrizio Mo, Chiara Elfi Spano, Yuri Ardesi, Gianluca Piccinini, Mariagrazia Graziano
{"title":"单分子光电器件的高效计算模型","authors":"Alberto Bottacin,&nbsp;Fabrizio Mo,&nbsp;Chiara Elfi Spano,&nbsp;Yuri Ardesi,&nbsp;Gianluca Piccinini,&nbsp;Mariagrazia Graziano","doi":"10.1007/s10825-025-02287-5","DOIUrl":null,"url":null,"abstract":"<div><p>The growing interest in tuning the conduction properties of single-molecule junctions has drawn attention to studying their interaction with incident electromagnetic fields. The theoretical complexity of this problem necessitates the use of nonequilibrium statistical mechanics combined with quantum electrodynamics, leading to extremely time-consuming simulations. In this work, we propose a computationally efficient algorithm, which combines EE-BESD—an efficient and effective simulator of current–voltage characteristics in dark conditions—with approximated models for light interaction, specifically the Tien-Gordon and Floquet models. We validate EE-BESD-PAT through comparison with ab initio calculations and experimental data from the literature. Our computational model demonstrates good agreement with both experimental and density functional theory calculations, demonstrating that the proposed method is a promising computationally efficient tool without sacrificing accuracy.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-025-02287-5.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient computational model for single-molecule optoelectronic devices\",\"authors\":\"Alberto Bottacin,&nbsp;Fabrizio Mo,&nbsp;Chiara Elfi Spano,&nbsp;Yuri Ardesi,&nbsp;Gianluca Piccinini,&nbsp;Mariagrazia Graziano\",\"doi\":\"10.1007/s10825-025-02287-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing interest in tuning the conduction properties of single-molecule junctions has drawn attention to studying their interaction with incident electromagnetic fields. The theoretical complexity of this problem necessitates the use of nonequilibrium statistical mechanics combined with quantum electrodynamics, leading to extremely time-consuming simulations. In this work, we propose a computationally efficient algorithm, which combines EE-BESD—an efficient and effective simulator of current–voltage characteristics in dark conditions—with approximated models for light interaction, specifically the Tien-Gordon and Floquet models. We validate EE-BESD-PAT through comparison with ab initio calculations and experimental data from the literature. Our computational model demonstrates good agreement with both experimental and density functional theory calculations, demonstrating that the proposed method is a promising computationally efficient tool without sacrificing accuracy.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10825-025-02287-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-025-02287-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02287-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对单分子结的导电性的研究越来越感兴趣,研究它们与入射电磁场的相互作用引起了人们的注意。这个问题的理论复杂性需要使用非平衡统计力学与量子电动力学相结合,导致极其耗时的模拟。在这项工作中,我们提出了一种计算效率高的算法,该算法将ee - besd(黑暗条件下电流-电压特性的高效模拟器)与光相互作用的近似模型(特别是Tien-Gordon和Floquet模型)相结合。我们通过从头计算和文献中的实验数据进行比较,验证了EE-BESD-PAT。我们的计算模型与实验和密度泛函理论计算结果一致,表明所提出的方法是一种有前途的计算效率的工具,而不会牺牲精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient computational model for single-molecule optoelectronic devices

The growing interest in tuning the conduction properties of single-molecule junctions has drawn attention to studying their interaction with incident electromagnetic fields. The theoretical complexity of this problem necessitates the use of nonequilibrium statistical mechanics combined with quantum electrodynamics, leading to extremely time-consuming simulations. In this work, we propose a computationally efficient algorithm, which combines EE-BESD—an efficient and effective simulator of current–voltage characteristics in dark conditions—with approximated models for light interaction, specifically the Tien-Gordon and Floquet models. We validate EE-BESD-PAT through comparison with ab initio calculations and experimental data from the literature. Our computational model demonstrates good agreement with both experimental and density functional theory calculations, demonstrating that the proposed method is a promising computationally efficient tool without sacrificing accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信