有限源知识下基于Wasserstein分布鲁棒性的未知域泛化

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingge Wang;Liyan Xie;Yao Xie;Shao-Lun Huang;Yang Li
{"title":"有限源知识下基于Wasserstein分布鲁棒性的未知域泛化","authors":"Jingge Wang;Liyan Xie;Yao Xie;Shao-Lun Huang;Yang Li","doi":"10.1109/JSTSP.2024.3434498","DOIUrl":null,"url":null,"abstract":"Domain generalization aims at learning a universal model that performs well on unseen target domains, incorporating knowledge from multiple source domains. In this research, we consider the scenario where different domain shifts occur among conditional distributions of different classes across domains. When labeled samples in the source domains are limited, existing approaches are not sufficiently robust. To address this problem, we propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG), inspired by the concept of distributionally robust optimization. We encourage robustness over conditional distributions within class-specific Wasserstein uncertainty sets and optimize the worst-case performance of a classifier over these uncertainty sets. We further develop a test-time adaptation module, leveraging optimal transport to quantify the relationship between the unseen target domain and source domains to make adaptive inferences for target data. Experiments on the Rotated MNIST, PACS, and VLCS datasets demonstrate that our method could effectively balance the robustness and discriminability in challenging generalization scenarios.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 1","pages":"103-114"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizing to Unseen Domains With Wasserstein Distributional Robustness Under Limited Source Knowledge\",\"authors\":\"Jingge Wang;Liyan Xie;Yao Xie;Shao-Lun Huang;Yang Li\",\"doi\":\"10.1109/JSTSP.2024.3434498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain generalization aims at learning a universal model that performs well on unseen target domains, incorporating knowledge from multiple source domains. In this research, we consider the scenario where different domain shifts occur among conditional distributions of different classes across domains. When labeled samples in the source domains are limited, existing approaches are not sufficiently robust. To address this problem, we propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG), inspired by the concept of distributionally robust optimization. We encourage robustness over conditional distributions within class-specific Wasserstein uncertainty sets and optimize the worst-case performance of a classifier over these uncertainty sets. We further develop a test-time adaptation module, leveraging optimal transport to quantify the relationship between the unseen target domain and source domains to make adaptive inferences for target data. Experiments on the Rotated MNIST, PACS, and VLCS datasets demonstrate that our method could effectively balance the robustness and discriminability in challenging generalization scenarios.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"19 1\",\"pages\":\"103-114\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663948/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663948/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

领域泛化的目的是学习一个通用的模型,该模型结合了来自多个源领域的知识,在未知的目标领域表现良好。在本研究中,我们考虑了不同类别的条件分布在不同领域中发生不同领域转移的情况。当源域的标记样本有限时,现有方法的鲁棒性不足。为了解决这个问题,我们提出了一个新的领域泛化框架,称为Wasserstein分布鲁棒领域泛化(WDRDG),灵感来自分布鲁棒优化的概念。我们鼓励在特定类的Wasserstein不确定性集的条件分布上的鲁棒性,并在这些不确定性集上优化分类器的最坏情况性能。我们进一步开发了一个测试时间适应模块,利用最佳传输来量化未见目标域和源域之间的关系,从而对目标数据进行自适应推断。在旋转的MNIST、PACS和VLCS数据集上的实验表明,我们的方法可以在具有挑战性的泛化场景中有效地平衡鲁棒性和可判别性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizing to Unseen Domains With Wasserstein Distributional Robustness Under Limited Source Knowledge
Domain generalization aims at learning a universal model that performs well on unseen target domains, incorporating knowledge from multiple source domains. In this research, we consider the scenario where different domain shifts occur among conditional distributions of different classes across domains. When labeled samples in the source domains are limited, existing approaches are not sufficiently robust. To address this problem, we propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG), inspired by the concept of distributionally robust optimization. We encourage robustness over conditional distributions within class-specific Wasserstein uncertainty sets and optimize the worst-case performance of a classifier over these uncertainty sets. We further develop a test-time adaptation module, leveraging optimal transport to quantify the relationship between the unseen target domain and source domains to make adaptive inferences for target data. Experiments on the Rotated MNIST, PACS, and VLCS datasets demonstrate that our method could effectively balance the robustness and discriminability in challenging generalization scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信