具有高精度片上聚合标签学习的边缘神经形态处理器

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guanyu Chen;Mingju Chen;Tengxiao Wang;Haibing Wang;Xiang Fu;Yingcheng Lin;Liyuan Liu;Cong Shi
{"title":"具有高精度片上聚合标签学习的边缘神经形态处理器","authors":"Guanyu Chen;Mingju Chen;Tengxiao Wang;Haibing Wang;Xiang Fu;Yingcheng Lin;Liyuan Liu;Cong Shi","doi":"10.1109/TCSII.2025.3529670","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing with bio-inspired spiking neural networks (SNNs) offers an energy-efficient paradigm for edge intelligence. But, achieving practically high on-chip SNN learning accuracy with limited hardware resources still remains challenging. To tackle this issue, this brief proposes an edge neuromorphic processor architecture enabling computationally-simple optimized aggregate-label (AL) algorithm to realize high-accuracy on-chip learning. To maximize utilization of multicore resources and minimize processing latency, our processor adopts techniques including uniform neuron-core mapping, layer-alternating workflow, time-step pipeline and event-driven scheme. We benchmarked our processor on an FPGA device, and attained high on-chip learning accuracies of 97.21%, 88.1%, 90.92%, 100% and 99.22% on MNIST, Fashion-MNIST, ETH-80, ORL-10, and Yale-10 datasets, respectively, using a small 2-layer fully-connected (FC) SNN, with a moderate resource cost and a relatively high energy efficiency. These results indicate that our design is very useful for many self-adaptive edge systems.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 3","pages":"509-513"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Edge Neuromorphic Processor With High-Accuracy On-Chip Aggregate-Label Learning\",\"authors\":\"Guanyu Chen;Mingju Chen;Tengxiao Wang;Haibing Wang;Xiang Fu;Yingcheng Lin;Liyuan Liu;Cong Shi\",\"doi\":\"10.1109/TCSII.2025.3529670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing with bio-inspired spiking neural networks (SNNs) offers an energy-efficient paradigm for edge intelligence. But, achieving practically high on-chip SNN learning accuracy with limited hardware resources still remains challenging. To tackle this issue, this brief proposes an edge neuromorphic processor architecture enabling computationally-simple optimized aggregate-label (AL) algorithm to realize high-accuracy on-chip learning. To maximize utilization of multicore resources and minimize processing latency, our processor adopts techniques including uniform neuron-core mapping, layer-alternating workflow, time-step pipeline and event-driven scheme. We benchmarked our processor on an FPGA device, and attained high on-chip learning accuracies of 97.21%, 88.1%, 90.92%, 100% and 99.22% on MNIST, Fashion-MNIST, ETH-80, ORL-10, and Yale-10 datasets, respectively, using a small 2-layer fully-connected (FC) SNN, with a moderate resource cost and a relatively high energy efficiency. These results indicate that our design is very useful for many self-adaptive edge systems.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 3\",\"pages\":\"509-513\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10841405/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10841405/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于生物激发的峰值神经网络(snn)的神经形态计算为边缘智能提供了一种高效节能的范例。但是,在有限的硬件资源下实现实际的高片上SNN学习精度仍然是一个挑战。为了解决这个问题,本文提出了一种边缘神经形态处理器架构,使计算简单的优化聚合标签(AL)算法能够实现高精度的片上学习。为了最大限度地利用多核资源和最小化处理延迟,我们的处理器采用了统一的神经元核映射、层交替工作流、时间步长管道和事件驱动方案等技术。我们在FPGA器件上对我们的处理器进行了基准测试,使用一个小型的2层全连接(FC) SNN,在MNIST、Fashion-MNIST、ETH-80、ORL-10和耶鲁-10数据集上分别获得了97.21%、88.1%、90.92%、100%和99.22%的片上学习准确率,资源成本适中,能源效率相对较高。这些结果表明,我们的设计对于许多自适应边缘系统是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Edge Neuromorphic Processor With High-Accuracy On-Chip Aggregate-Label Learning
Neuromorphic computing with bio-inspired spiking neural networks (SNNs) offers an energy-efficient paradigm for edge intelligence. But, achieving practically high on-chip SNN learning accuracy with limited hardware resources still remains challenging. To tackle this issue, this brief proposes an edge neuromorphic processor architecture enabling computationally-simple optimized aggregate-label (AL) algorithm to realize high-accuracy on-chip learning. To maximize utilization of multicore resources and minimize processing latency, our processor adopts techniques including uniform neuron-core mapping, layer-alternating workflow, time-step pipeline and event-driven scheme. We benchmarked our processor on an FPGA device, and attained high on-chip learning accuracies of 97.21%, 88.1%, 90.92%, 100% and 99.22% on MNIST, Fashion-MNIST, ETH-80, ORL-10, and Yale-10 datasets, respectively, using a small 2-layer fully-connected (FC) SNN, with a moderate resource cost and a relatively high energy efficiency. These results indicate that our design is very useful for many self-adaptive edge systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信