{"title":"隧道掘进机能耗可靠预测:一种平衡可解释性与性能的新技术","authors":"Wenli Liu, Yafei Qi, Fenghua Liu","doi":"10.1016/j.undsp.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, AI-based models have been applied to accurately estimate tunnel boring machine (TBM) energy consumption. Although data-driven models exhibit strong predictive capabilities, their outputs derived from “black box” processes are challenging to interpret and generalize. Consequently, this study develops an XGB_MOFS model that cooperates extreme gradient boosting (XGBoost) and multi-objective feature selection (MOFS) to improve the accuracy and explainability of energy consumption prediction. The XGB_MOFS model includes: (1) a causal inference framework to identify the causal relationships among influential factors, and (2) a MOFS approach to balance predictive performance and explainability. Two case studies are carried out to verify the proposed method. Results show that XGB_MOFS achieves a high degree of accuracy and robustness in energy consumption prediction. The XGB_MOFS model, balancing accuracy with explainability, serves as an effective and feasible tool for regulating TBM energy consumption.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 77-95"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable prediction for TBM energy consumption during tunnel excavation: A novel technique balancing explainability and performance\",\"authors\":\"Wenli Liu, Yafei Qi, Fenghua Liu\",\"doi\":\"10.1016/j.undsp.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, AI-based models have been applied to accurately estimate tunnel boring machine (TBM) energy consumption. Although data-driven models exhibit strong predictive capabilities, their outputs derived from “black box” processes are challenging to interpret and generalize. Consequently, this study develops an XGB_MOFS model that cooperates extreme gradient boosting (XGBoost) and multi-objective feature selection (MOFS) to improve the accuracy and explainability of energy consumption prediction. The XGB_MOFS model includes: (1) a causal inference framework to identify the causal relationships among influential factors, and (2) a MOFS approach to balance predictive performance and explainability. Two case studies are carried out to verify the proposed method. Results show that XGB_MOFS achieves a high degree of accuracy and robustness in energy consumption prediction. The XGB_MOFS model, balancing accuracy with explainability, serves as an effective and feasible tool for regulating TBM energy consumption.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"22 \",\"pages\":\"Pages 77-95\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424001338\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001338","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Reliable prediction for TBM energy consumption during tunnel excavation: A novel technique balancing explainability and performance
Recently, AI-based models have been applied to accurately estimate tunnel boring machine (TBM) energy consumption. Although data-driven models exhibit strong predictive capabilities, their outputs derived from “black box” processes are challenging to interpret and generalize. Consequently, this study develops an XGB_MOFS model that cooperates extreme gradient boosting (XGBoost) and multi-objective feature selection (MOFS) to improve the accuracy and explainability of energy consumption prediction. The XGB_MOFS model includes: (1) a causal inference framework to identify the causal relationships among influential factors, and (2) a MOFS approach to balance predictive performance and explainability. Two case studies are carried out to verify the proposed method. Results show that XGB_MOFS achieves a high degree of accuracy and robustness in energy consumption prediction. The XGB_MOFS model, balancing accuracy with explainability, serves as an effective and feasible tool for regulating TBM energy consumption.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.