模拟多孔介质蒸发的相场方法:建模和升级

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
Tufan Ghosh , Carina Bringedal , Christian Rohde , Rainer Helmig
{"title":"模拟多孔介质蒸发的相场方法:建模和升级","authors":"Tufan Ghosh ,&nbsp;Carina Bringedal ,&nbsp;Christian Rohde ,&nbsp;Rainer Helmig","doi":"10.1016/j.advwatres.2025.104922","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a phase-field model for evaporation from a porous medium by explicitly considering a vapor component together with the liquid and gas phases in the system. The phase-field model consists of the conservation of mass (for phases and vapor component), momentum, and energy. In addition, the evolution of the phase field is described by the Allen–Cahn equation. In the limit of vanishing interface width, matched asymptotic expansions reveal that the phase-field model reduces to the sharp-interface model with all the relevant transmission conditions on the moving interface. An energy estimate is derived, which suggests that for the diffusion-dominated regime, energy always decreases with time. However, this is not trivial in the case of other regimes. Through numerical examples, we analyze the efficiency of the developed phase-field formulation in modeling the evaporation process. We observe that our formulation is able to capture shrinking liquid droplet, in other words evaporation. Further, the phase-field model is upscaled to the Darcy scale using periodic homogenization for the diffusion-dominated regime. The effective parameters at the Darcy scale are connected to the pore scale through corresponding cell problems.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"199 ","pages":"Article 104922"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phase-field approach to model evaporation from porous media: Modeling and upscaling\",\"authors\":\"Tufan Ghosh ,&nbsp;Carina Bringedal ,&nbsp;Christian Rohde ,&nbsp;Rainer Helmig\",\"doi\":\"10.1016/j.advwatres.2025.104922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a phase-field model for evaporation from a porous medium by explicitly considering a vapor component together with the liquid and gas phases in the system. The phase-field model consists of the conservation of mass (for phases and vapor component), momentum, and energy. In addition, the evolution of the phase field is described by the Allen–Cahn equation. In the limit of vanishing interface width, matched asymptotic expansions reveal that the phase-field model reduces to the sharp-interface model with all the relevant transmission conditions on the moving interface. An energy estimate is derived, which suggests that for the diffusion-dominated regime, energy always decreases with time. However, this is not trivial in the case of other regimes. Through numerical examples, we analyze the efficiency of the developed phase-field formulation in modeling the evaporation process. We observe that our formulation is able to capture shrinking liquid droplet, in other words evaporation. Further, the phase-field model is upscaled to the Darcy scale using periodic homogenization for the diffusion-dominated regime. The effective parameters at the Darcy scale are connected to the pore scale through corresponding cell problems.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"199 \",\"pages\":\"Article 104922\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170825000363\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000363","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

通过明确地考虑系统中的蒸汽组分以及液相和气相,我们建立了多孔介质蒸发的相场模型。相场模型包括质量守恒(相和蒸汽成分)、动量守恒和能量守恒。此外,用Allen-Cahn方程描述了相场的演化过程。在消失界面宽度的极限下,匹配渐近展开式表明,相场模型简化为具有运动界面上所有相关传输条件的锐界面模型。导出了一个能量估计,表明在扩散主导状态下,能量总是随时间而减小。然而,在其他政权的情况下,这并非微不足道。通过数值算例,分析了所建立的相场公式在模拟蒸发过程中的有效性。我们观察到,我们的配方能够捕获收缩的液滴,即蒸发。此外,在扩散占主导地位的情况下,使用周期均匀化将相场模型升级到达西尺度。达西尺度上的有效参数通过相应的细胞问题与孔隙尺度相联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A phase-field approach to model evaporation from porous media: Modeling and upscaling
We develop a phase-field model for evaporation from a porous medium by explicitly considering a vapor component together with the liquid and gas phases in the system. The phase-field model consists of the conservation of mass (for phases and vapor component), momentum, and energy. In addition, the evolution of the phase field is described by the Allen–Cahn equation. In the limit of vanishing interface width, matched asymptotic expansions reveal that the phase-field model reduces to the sharp-interface model with all the relevant transmission conditions on the moving interface. An energy estimate is derived, which suggests that for the diffusion-dominated regime, energy always decreases with time. However, this is not trivial in the case of other regimes. Through numerical examples, we analyze the efficiency of the developed phase-field formulation in modeling the evaporation process. We observe that our formulation is able to capture shrinking liquid droplet, in other words evaporation. Further, the phase-field model is upscaled to the Darcy scale using periodic homogenization for the diffusion-dominated regime. The effective parameters at the Darcy scale are connected to the pore scale through corresponding cell problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信