考虑流态和管道几何的河堤后冲管水力梯度预测

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Mitsu Okamura , Nene Kusube
{"title":"考虑流态和管道几何的河堤后冲管水力梯度预测","authors":"Mitsu Okamura ,&nbsp;Nene Kusube","doi":"10.1016/j.sandf.2025.101591","DOIUrl":null,"url":null,"abstract":"<div><div>The hydraulic gradient that causes backward erosion piping in river levees is of significant concern in geotechnical engineering. Traditionally, the mechanism of pipe progression beneath levees has primarily been studied using small-scale model experiments. Prediction methods for the critical hydraulic gradient have been developed in which the simple pipe geometry and laminar pipe flow were assumed. However, recent studies have suggested that turbulent flow is more likely in the pipes of prototype-scale levees and that both the pipe geometry and flow regime significantly influence pipe progression and the resulting gradient. The present study proposes a prediction method that accounts for the effects of the foundation’s soil properties, levee scale, flow regime, and pipe geometry. The method is validated by comparing the predicted results with those from centrifuge tests. All the analytical results are found to be consistent with the test observations, demonstrating that the proposed method can satisfactorily predict the effects of the testing parameters on the hydraulic gradient. The scale effect of levees on the critical hydraulic gradient remains a critical issue, as the direct application of small-scale test results to prototype levees often results in the overprediction of the gradient. The method is also used to evaluate the progression gradient of full-scale levees, confirming that the gradient is inversely proportional to the square root of the levee width (<em>L</em><sup>−1/2</sup>) under laminar pipe flow conditions. Under turbulent flow conditions, which are more likely in field-scale levees, the exponent may be even smaller.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 2","pages":"Article 101591"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of hydraulic gradient for backward erosion piping in river levees considering flow regime and pipe geometry\",\"authors\":\"Mitsu Okamura ,&nbsp;Nene Kusube\",\"doi\":\"10.1016/j.sandf.2025.101591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The hydraulic gradient that causes backward erosion piping in river levees is of significant concern in geotechnical engineering. Traditionally, the mechanism of pipe progression beneath levees has primarily been studied using small-scale model experiments. Prediction methods for the critical hydraulic gradient have been developed in which the simple pipe geometry and laminar pipe flow were assumed. However, recent studies have suggested that turbulent flow is more likely in the pipes of prototype-scale levees and that both the pipe geometry and flow regime significantly influence pipe progression and the resulting gradient. The present study proposes a prediction method that accounts for the effects of the foundation’s soil properties, levee scale, flow regime, and pipe geometry. The method is validated by comparing the predicted results with those from centrifuge tests. All the analytical results are found to be consistent with the test observations, demonstrating that the proposed method can satisfactorily predict the effects of the testing parameters on the hydraulic gradient. The scale effect of levees on the critical hydraulic gradient remains a critical issue, as the direct application of small-scale test results to prototype levees often results in the overprediction of the gradient. The method is also used to evaluate the progression gradient of full-scale levees, confirming that the gradient is inversely proportional to the square root of the levee width (<em>L</em><sup>−1/2</sup>) under laminar pipe flow conditions. Under turbulent flow conditions, which are more likely in field-scale levees, the exponent may be even smaller.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"65 2\",\"pages\":\"Article 101591\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080625000253\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

引起河堤反冲管的水力梯度是岩土工程中的一个重要问题。传统上,对堤下管道推进机理的研究主要是通过小尺度模型试验进行的。在简单管道几何和层流管道流动的假设下,发展了临界水力梯度的预测方法。然而,最近的研究表明,湍流更可能发生在原型规模堤防的管道中,管道的几何形状和流动形式都会显著影响管道的进展和由此产生的梯度。本研究提出了一种预测方法,该方法考虑了地基的土壤特性、堤防规模、流动状况和管道几何形状的影响。通过将预测结果与离心试验结果进行比较,验证了该方法的有效性。分析结果与试验观测结果一致,表明本文方法能较好地预测试验参数对水力梯度的影响。堤防的尺度效应对临界水力梯度的影响仍然是一个关键问题,因为将小规模试验结果直接应用于原型堤防往往会导致对临界水力梯度的过度预测。该方法还用于评估全尺寸堤防的级数梯度,证实了在层流管道流动条件下,梯度与堤防宽度(L−1/2)的平方根成反比。在湍流条件下,这种情况更有可能出现在现场规模的堤坝中,指数可能更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of hydraulic gradient for backward erosion piping in river levees considering flow regime and pipe geometry
The hydraulic gradient that causes backward erosion piping in river levees is of significant concern in geotechnical engineering. Traditionally, the mechanism of pipe progression beneath levees has primarily been studied using small-scale model experiments. Prediction methods for the critical hydraulic gradient have been developed in which the simple pipe geometry and laminar pipe flow were assumed. However, recent studies have suggested that turbulent flow is more likely in the pipes of prototype-scale levees and that both the pipe geometry and flow regime significantly influence pipe progression and the resulting gradient. The present study proposes a prediction method that accounts for the effects of the foundation’s soil properties, levee scale, flow regime, and pipe geometry. The method is validated by comparing the predicted results with those from centrifuge tests. All the analytical results are found to be consistent with the test observations, demonstrating that the proposed method can satisfactorily predict the effects of the testing parameters on the hydraulic gradient. The scale effect of levees on the critical hydraulic gradient remains a critical issue, as the direct application of small-scale test results to prototype levees often results in the overprediction of the gradient. The method is also used to evaluate the progression gradient of full-scale levees, confirming that the gradient is inversely proportional to the square root of the levee width (L−1/2) under laminar pipe flow conditions. Under turbulent flow conditions, which are more likely in field-scale levees, the exponent may be even smaller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信