两相磁流体扩散界面模型半隐式数值格式的误差估计

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Dongmei Duan , Fuzheng Gao , Jinjin Yang , Xiaoming He
{"title":"两相磁流体扩散界面模型半隐式数值格式的误差估计","authors":"Dongmei Duan ,&nbsp;Fuzheng Gao ,&nbsp;Jinjin Yang ,&nbsp;Xiaoming He","doi":"10.1016/j.cam.2025.116580","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we carry out a rigorous error analysis of the fully discrete semi-implicit numerical scheme proposed in Yang et al. (2019) for the diffuse interface model of two-phase magnetohydrodynamics (MHD) flows with different viscosities and electric conductivities in two and three-dimensional cases. The nonlinear and strong coupled properties and the variable coefficients of the model itself bring the major analytical difficulties in the error estimates. Based on three projection operators, including Stokes projection, Maxwell projection and Ritz projection, we select appropriate test functions, apply the Lipschitz continuous properties of the variable coefficients, and develop the strategies of utilizing intermediate terms to address the major difficulties caused by the model itself. Finally, we establish both the spatial and temporal convergence rates.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116580"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates of semi-implicit numerical scheme for a diffuse interface model of two-phase magnetohydrodynamic flows\",\"authors\":\"Dongmei Duan ,&nbsp;Fuzheng Gao ,&nbsp;Jinjin Yang ,&nbsp;Xiaoming He\",\"doi\":\"10.1016/j.cam.2025.116580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we carry out a rigorous error analysis of the fully discrete semi-implicit numerical scheme proposed in Yang et al. (2019) for the diffuse interface model of two-phase magnetohydrodynamics (MHD) flows with different viscosities and electric conductivities in two and three-dimensional cases. The nonlinear and strong coupled properties and the variable coefficients of the model itself bring the major analytical difficulties in the error estimates. Based on three projection operators, including Stokes projection, Maxwell projection and Ritz projection, we select appropriate test functions, apply the Lipschitz continuous properties of the variable coefficients, and develop the strategies of utilizing intermediate terms to address the major difficulties caused by the model itself. Finally, we establish both the spatial and temporal convergence rates.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"465 \",\"pages\":\"Article 116580\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725000950\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000950","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对Yang等人(2019)提出的二维和三维情况下具有不同粘度和电导率的两相磁流体动力学(MHD)扩散界面模型的全离散半隐式数值格式进行了严格的误差分析。模型本身的非线性和强耦合特性以及变系数给误差估计带来了很大的分析困难。在Stokes投影、Maxwell投影和Ritz投影三种投影算子的基础上,选择合适的检验函数,应用变系数的Lipschitz连续性质,并制定利用中间项的策略来解决模型本身造成的主要困难。最后,我们建立了空间和时间的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates of semi-implicit numerical scheme for a diffuse interface model of two-phase magnetohydrodynamic flows
In this paper, we carry out a rigorous error analysis of the fully discrete semi-implicit numerical scheme proposed in Yang et al. (2019) for the diffuse interface model of two-phase magnetohydrodynamics (MHD) flows with different viscosities and electric conductivities in two and three-dimensional cases. The nonlinear and strong coupled properties and the variable coefficients of the model itself bring the major analytical difficulties in the error estimates. Based on three projection operators, including Stokes projection, Maxwell projection and Ritz projection, we select appropriate test functions, apply the Lipschitz continuous properties of the variable coefficients, and develop the strategies of utilizing intermediate terms to address the major difficulties caused by the model itself. Finally, we establish both the spatial and temporal convergence rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信