关于交替排列、施普林格数字和避免扁平持久性有机污染物的最大值和最小值统计的分布

IF 1.2 2区 数学 Q2 MATHEMATICS
Tian Han , Sergey Kitaev , Philip B. Zhang
{"title":"关于交替排列、施普林格数字和避免扁平持久性有机污染物的最大值和最小值统计的分布","authors":"Tian Han ,&nbsp;Sergey Kitaev ,&nbsp;Philip B. Zhang","doi":"10.1016/j.jcta.2025.106034","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we find distributions of the left-to-right maxima, right-to-left maxima, left-to-right minima and right-to-left-minima statistics on up-down and down-up permutations of even and odd lengths. We recover and generalize a result by Carlitz and Scoville, obtained in 1975, stating that the distribution of left-to-right maxima on down-up permutations of even length is given by <span><math><msup><mrow><mo>(</mo><mi>sec</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span>. We also derive the joint distribution of the maxima (resp., minima) statistics, extending the scope of the respective results of Carlitz and Scoville, who obtain them in terms of certain systems of PDEs and recurrence relations. To accomplish this, we generalize a result of Kitaev and Remmel by deriving joint distributions involving non-maxima (resp., non-minima) statistics. Consequently, we refine classic enumeration results of André by introducing new <em>q</em>-analogues and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-analogues for the number of alternating permutations.</div><div>Additionally, we verify Callan's conjecture (2012) that up-down permutations of even length fixed by reverse and complement are counted by the Springer numbers, thereby offering another combinatorial interpretation of these numbers. Furthermore, we propose two <em>q</em>-analogues and a <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-analogue of the Springer numbers. Lastly, we enumerate alternating permutations that avoid certain flat partially ordered patterns.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106034"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of maxima and minima statistics on alternating permutations, Springer numbers, and avoidance of flat POPs\",\"authors\":\"Tian Han ,&nbsp;Sergey Kitaev ,&nbsp;Philip B. Zhang\",\"doi\":\"10.1016/j.jcta.2025.106034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we find distributions of the left-to-right maxima, right-to-left maxima, left-to-right minima and right-to-left-minima statistics on up-down and down-up permutations of even and odd lengths. We recover and generalize a result by Carlitz and Scoville, obtained in 1975, stating that the distribution of left-to-right maxima on down-up permutations of even length is given by <span><math><msup><mrow><mo>(</mo><mi>sec</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span>. We also derive the joint distribution of the maxima (resp., minima) statistics, extending the scope of the respective results of Carlitz and Scoville, who obtain them in terms of certain systems of PDEs and recurrence relations. To accomplish this, we generalize a result of Kitaev and Remmel by deriving joint distributions involving non-maxima (resp., non-minima) statistics. Consequently, we refine classic enumeration results of André by introducing new <em>q</em>-analogues and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-analogues for the number of alternating permutations.</div><div>Additionally, we verify Callan's conjecture (2012) that up-down permutations of even length fixed by reverse and complement are counted by the Springer numbers, thereby offering another combinatorial interpretation of these numbers. Furthermore, we propose two <em>q</em>-analogues and a <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-analogue of the Springer numbers. Lastly, we enumerate alternating permutations that avoid certain flat partially ordered patterns.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"213 \",\"pages\":\"Article 106034\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000299\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000299","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了奇偶长度上下置换的从左到右极大值、从右到左极大值、从左到右极小值和从右到左极小值统计量的分布。我们恢复并推广了Carlitz和Scoville在1975年得到的一个结果,即偶数长度的上下排列的从左到右极大值的分布由(sec (t)))q给出。我们还推导出了极大值的联合分布。(极小值)统计量,扩展了Carlitz和Scoville各自结果的范围,他们根据偏微分方程和递推关系的某些系统获得了这些结果。为了实现这一点,我们通过推导涉及非极大值的联合分布来推广Kitaev和Remmel的结果。(非最小值)统计。因此,我们通过引入新的q-类似物和(p,q)-类似物来改进andr的经典枚举结果。此外,我们验证了Callan的猜想(2012),即由逆和补固定的偶数长度的上下排列由施普林格数计算,从而提供了这些数的另一种组合解释。此外,我们提出了施普林格数的两个q类似物和一个(p,q)-类似物。最后,我们列举了避免某些平坦部分有序模式的交替排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of maxima and minima statistics on alternating permutations, Springer numbers, and avoidance of flat POPs
In this paper, we find distributions of the left-to-right maxima, right-to-left maxima, left-to-right minima and right-to-left-minima statistics on up-down and down-up permutations of even and odd lengths. We recover and generalize a result by Carlitz and Scoville, obtained in 1975, stating that the distribution of left-to-right maxima on down-up permutations of even length is given by (sec(t))q. We also derive the joint distribution of the maxima (resp., minima) statistics, extending the scope of the respective results of Carlitz and Scoville, who obtain them in terms of certain systems of PDEs and recurrence relations. To accomplish this, we generalize a result of Kitaev and Remmel by deriving joint distributions involving non-maxima (resp., non-minima) statistics. Consequently, we refine classic enumeration results of André by introducing new q-analogues and (p,q)-analogues for the number of alternating permutations.
Additionally, we verify Callan's conjecture (2012) that up-down permutations of even length fixed by reverse and complement are counted by the Springer numbers, thereby offering another combinatorial interpretation of these numbers. Furthermore, we propose two q-analogues and a (p,q)-analogue of the Springer numbers. Lastly, we enumerate alternating permutations that avoid certain flat partially ordered patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信