用模拟工具PICLas模拟非均相催化反应

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
S. Lauterbach, S. Fasoulas, M. Pfeiffer
{"title":"用模拟工具PICLas模拟非均相催化反应","authors":"S. Lauterbach,&nbsp;S. Fasoulas,&nbsp;M. Pfeiffer","doi":"10.1016/j.cpc.2025.109560","DOIUrl":null,"url":null,"abstract":"<div><div>The gas-surface interaction model of the open-source gas and plasma simulation tool PICLas has been extended for the simulation of catalytic reactions. A variety of reaction mechanisms have been implemented, including multiple adsorption models, desorption, the Eley-Rideal and the Langmuir-Hinshelwood mechanism. Modeling is based upon macroscopic reaction data and parameters derived from experiments or ab-initio quantum calculations. The implementation has been validated through a comparison to analytical reaction rates. Simulations of the carbon monoxide and oxygen reaction network on a Pd(111) surface are performed and compared to experimental data obtained by temperature-programmed desorption spectra and molecular beam measurements. The results show good agreement with the measurement data.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"311 ","pages":"Article 109560"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of heterogeneous catalytic reactions with the simulation tool PICLas\",\"authors\":\"S. Lauterbach,&nbsp;S. Fasoulas,&nbsp;M. Pfeiffer\",\"doi\":\"10.1016/j.cpc.2025.109560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The gas-surface interaction model of the open-source gas and plasma simulation tool PICLas has been extended for the simulation of catalytic reactions. A variety of reaction mechanisms have been implemented, including multiple adsorption models, desorption, the Eley-Rideal and the Langmuir-Hinshelwood mechanism. Modeling is based upon macroscopic reaction data and parameters derived from experiments or ab-initio quantum calculations. The implementation has been validated through a comparison to analytical reaction rates. Simulations of the carbon monoxide and oxygen reaction network on a Pd(111) surface are performed and compared to experimental data obtained by temperature-programmed desorption spectra and molecular beam measurements. The results show good agreement with the measurement data.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"311 \",\"pages\":\"Article 109560\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525000633\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000633","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

开放源代码的气体和等离子体模拟工具PICLas的气-表面相互作用模型已扩展用于模拟催化反应。多种反应机理已被实现,包括多种吸附模型、解吸模型、Eley-Rideal机制和Langmuir-Hinshelwood机制。建模是基于宏观反应数据和从实验或从头算量子计算得出的参数。通过与分析反应速率的比较,验证了该方法的有效性。模拟了Pd(111)表面上的一氧化碳和氧气反应网络,并与通过程序升温解吸光谱和分子束测量获得的实验数据进行了比较。计算结果与实测数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of heterogeneous catalytic reactions with the simulation tool PICLas
The gas-surface interaction model of the open-source gas and plasma simulation tool PICLas has been extended for the simulation of catalytic reactions. A variety of reaction mechanisms have been implemented, including multiple adsorption models, desorption, the Eley-Rideal and the Langmuir-Hinshelwood mechanism. Modeling is based upon macroscopic reaction data and parameters derived from experiments or ab-initio quantum calculations. The implementation has been validated through a comparison to analytical reaction rates. Simulations of the carbon monoxide and oxygen reaction network on a Pd(111) surface are performed and compared to experimental data obtained by temperature-programmed desorption spectra and molecular beam measurements. The results show good agreement with the measurement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信