Minjia Shi , Shitao Li , Tor Helleseth , Jon-Lark Kim
{"title":"满足Griesmer界或具有最优最小距离的二进制自正交码","authors":"Minjia Shi , Shitao Li , Tor Helleseth , Jon-Lark Kim","doi":"10.1016/j.jcta.2025.106027","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this paper is two-fold. First, we characterize the existence of binary self-orthogonal codes meeting the Griesmer bound by employing the Solomon-Stiffler codes. As a result, we reduce a problem with an infinite number of cases to a finite number of cases. Second, we develop a general method to prove the nonexistence of some binary self-orthogonal codes by considering the residual code of a binary self-orthogonal code. Using such a characterization, we completely determine the exact value of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>o</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mn>7</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>o</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denotes the largest minimum distance among all binary self-orthogonal <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></math></span> codes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106027"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary self-orthogonal codes which meet the Griesmer bound or have optimal minimum distances\",\"authors\":\"Minjia Shi , Shitao Li , Tor Helleseth , Jon-Lark Kim\",\"doi\":\"10.1016/j.jcta.2025.106027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of this paper is two-fold. First, we characterize the existence of binary self-orthogonal codes meeting the Griesmer bound by employing the Solomon-Stiffler codes. As a result, we reduce a problem with an infinite number of cases to a finite number of cases. Second, we develop a general method to prove the nonexistence of some binary self-orthogonal codes by considering the residual code of a binary self-orthogonal code. Using such a characterization, we completely determine the exact value of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>o</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mn>7</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>o</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denotes the largest minimum distance among all binary self-orthogonal <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></math></span> codes.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"214 \",\"pages\":\"Article 106027\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000226\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000226","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Binary self-orthogonal codes which meet the Griesmer bound or have optimal minimum distances
The purpose of this paper is two-fold. First, we characterize the existence of binary self-orthogonal codes meeting the Griesmer bound by employing the Solomon-Stiffler codes. As a result, we reduce a problem with an infinite number of cases to a finite number of cases. Second, we develop a general method to prove the nonexistence of some binary self-orthogonal codes by considering the residual code of a binary self-orthogonal code. Using such a characterization, we completely determine the exact value of , where denotes the largest minimum distance among all binary self-orthogonal codes.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.