预制模块化受压建筑抗震设计

Zhiwu Ye , Haifeng Bu , Zhimao Liu , Deng Lu , Dong Min , Hongbo Shan
{"title":"预制模块化受压建筑抗震设计","authors":"Zhiwu Ye ,&nbsp;Haifeng Bu ,&nbsp;Zhimao Liu ,&nbsp;Deng Lu ,&nbsp;Dong Min ,&nbsp;Hongbo Shan","doi":"10.1016/j.rcns.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China. The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient. To solve this problem, the small friction pendulum bearing (FPB) isolation design is proposed for modular pressurized buildings. Firstly, a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings. The reasonability of the simplified model is verified by comparing the refined finite element model. Subsequently, according to the FPB design process for modular pressurized buildings, a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes. Lastly, the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis. The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility, respectively. When adopting FPBs, the response of the structure is significantly reduced, and the seismic isolation effect is obvious. The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly. It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.</div></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"4 1","pages":"Pages 53-70"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic resilience design of prefabricated modular pressurized buildings\",\"authors\":\"Zhiwu Ye ,&nbsp;Haifeng Bu ,&nbsp;Zhimao Liu ,&nbsp;Deng Lu ,&nbsp;Dong Min ,&nbsp;Hongbo Shan\",\"doi\":\"10.1016/j.rcns.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China. The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient. To solve this problem, the small friction pendulum bearing (FPB) isolation design is proposed for modular pressurized buildings. Firstly, a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings. The reasonability of the simplified model is verified by comparing the refined finite element model. Subsequently, according to the FPB design process for modular pressurized buildings, a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes. Lastly, the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis. The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility, respectively. When adopting FPBs, the response of the structure is significantly reduced, and the seismic isolation effect is obvious. The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly. It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.</div></div>\",\"PeriodicalId\":101077,\"journal\":{\"name\":\"Resilient Cities and Structures\",\"volume\":\"4 1\",\"pages\":\"Pages 53-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resilient Cities and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772741625000031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741625000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中国青藏高原地区地震烈度普遍较高。用于解决高原反应的新型预制模块化加压建筑的抗震性能不足。针对这一问题,提出了组合式承压建筑的小摩擦摆轴承隔震设计。首先,提出了受压模块的简化交叉桁架支撑模型,简化了受压建筑的建模和计算。通过与精化有限元模型的比较,验证了简化模型的合理性。随后,根据模块化加压建筑的FPB设计流程,为8度设防地震下的两层模块化加压建筑提供小型隔震FPB。最后,通过动力时程分析与非隔震结构进行对比,验证隔震结构的抗震有效性和施工可行性。研究结果表明,模块化加压建筑用fpb的尺寸应考虑位移和尺寸要求,分别衡量隔震性能和安装可行性。采用FPBs后,结构响应明显降低,隔震效果明显。所提出的施工工艺可以通过快速更换震后损坏构件来提高预制模块化加压建筑的抗震能力。为高烈度地区预制模块化加压建筑的隔震设计提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic resilience design of prefabricated modular pressurized buildings
The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China. The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient. To solve this problem, the small friction pendulum bearing (FPB) isolation design is proposed for modular pressurized buildings. Firstly, a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings. The reasonability of the simplified model is verified by comparing the refined finite element model. Subsequently, according to the FPB design process for modular pressurized buildings, a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes. Lastly, the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis. The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility, respectively. When adopting FPBs, the response of the structure is significantly reduced, and the seismic isolation effect is obvious. The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly. It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信