{"title":"具有logistic源和非次线性生产的奇异趋化系统的全局可解性","authors":"Xiangdong Zhao, Jiao Wang","doi":"10.1016/j.aml.2025.109511","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a singular chemotaxis system with logistic source and non-sublinear production under homogeneous boundary condition: <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mi>v</mi></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> in a bounded convex domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, here <span><math><mrow><mi>χ</mi><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. It is proved that the system admits a global solution if <span><math><mrow><mi>k</mi><mo>></mo><mn>2</mn></mrow></math></span> with <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><mi>k</mi><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span> with <span><math><mrow><mi>χ</mi><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span>. Moreover, the solution is globally bounded for the second case with <span><math><mrow><mi>r</mi><mo>≤</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>β</mi></mrow></mfrac></mrow></math></span>. This means that the logistic source along with non-sublinear production indeed benefits to ensure the global existence-boundedness of classical solution to this chemotaxis system with singular sensitivity.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"165 ","pages":"Article 109511"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global solvability in a singular chemotaxis system with logistic source and non-sublinear production\",\"authors\":\"Xiangdong Zhao, Jiao Wang\",\"doi\":\"10.1016/j.aml.2025.109511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with a singular chemotaxis system with logistic source and non-sublinear production under homogeneous boundary condition: <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mi>v</mi></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> in a bounded convex domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, here <span><math><mrow><mi>χ</mi><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. It is proved that the system admits a global solution if <span><math><mrow><mi>k</mi><mo>></mo><mn>2</mn></mrow></math></span> with <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><mi>k</mi><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span> with <span><math><mrow><mi>χ</mi><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span>. Moreover, the solution is globally bounded for the second case with <span><math><mrow><mi>r</mi><mo>≤</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>β</mi></mrow></mfrac></mrow></math></span>. This means that the logistic source along with non-sublinear production indeed benefits to ensure the global existence-boundedness of classical solution to this chemotaxis system with singular sensitivity.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"165 \",\"pages\":\"Article 109511\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000618\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000618","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global solvability in a singular chemotaxis system with logistic source and non-sublinear production
This paper deals with a singular chemotaxis system with logistic source and non-sublinear production under homogeneous boundary condition: , in a bounded convex domain with , here , , and . It is proved that the system admits a global solution if with , or and with . Moreover, the solution is globally bounded for the second case with . This means that the logistic source along with non-sublinear production indeed benefits to ensure the global existence-boundedness of classical solution to this chemotaxis system with singular sensitivity.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.