具有logistic源和非次线性生产的奇异趋化系统的全局可解性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Xiangdong Zhao, Jiao Wang
{"title":"具有logistic源和非次线性生产的奇异趋化系统的全局可解性","authors":"Xiangdong Zhao,&nbsp;Jiao Wang","doi":"10.1016/j.aml.2025.109511","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a singular chemotaxis system with logistic source and non-sublinear production under homogeneous boundary condition: <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mi>v</mi></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> in a bounded convex domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, here <span><math><mrow><mi>χ</mi><mo>,</mo><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. It is proved that the system admits a global solution if <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> with <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span> with <span><math><mrow><mi>χ</mi><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span>. Moreover, the solution is globally bounded for the second case with <span><math><mrow><mi>r</mi><mo>≤</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>β</mi></mrow></mfrac></mrow></math></span>. This means that the logistic source along with non-sublinear production indeed benefits to ensure the global existence-boundedness of classical solution to this chemotaxis system with singular sensitivity.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"165 ","pages":"Article 109511"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global solvability in a singular chemotaxis system with logistic source and non-sublinear production\",\"authors\":\"Xiangdong Zhao,&nbsp;Jiao Wang\",\"doi\":\"10.1016/j.aml.2025.109511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with a singular chemotaxis system with logistic source and non-sublinear production under homogeneous boundary condition: <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mi>v</mi></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> in a bounded convex domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, here <span><math><mrow><mi>χ</mi><mo>,</mo><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. It is proved that the system admits a global solution if <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> with <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, or <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span> with <span><math><mrow><mi>χ</mi><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span>. Moreover, the solution is globally bounded for the second case with <span><math><mrow><mi>r</mi><mo>≤</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>β</mi></mrow></mfrac></mrow></math></span>. This means that the logistic source along with non-sublinear production indeed benefits to ensure the global existence-boundedness of classical solution to this chemotaxis system with singular sensitivity.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"165 \",\"pages\":\"Article 109511\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000618\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000618","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究齐次边界条件下具有逻辑源和非次线性产生的奇异趋化系统:ut=Δu−χ∇⋅(uv∇v)+ru−μuk, vt=Δv−v+uβ,在有界凸域Ω∧Rn中n≥1,这里χ,μ>0, r∈r, k>1, β≥1。证明了当k>;2且β∈[1,k−1),或k>;1且β≥1且χ≤4nβ2时,系统存在全局解。此外,对于r≤- 1β的第二种情况,解是全局有界的。这意味着logistic源和非次线性生产确实有利于保证具有奇异灵敏度的趋化系统经典解的全局存在有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global solvability in a singular chemotaxis system with logistic source and non-sublinear production
This paper deals with a singular chemotaxis system with logistic source and non-sublinear production under homogeneous boundary condition: ut=Δuχ(uvv)+ruμuk, vt=Δvv+uβ in a bounded convex domain ΩRn with n1, here χ,μ>0, rR, k>1 and β1. It is proved that the system admits a global solution if k>2 with β[1,k1), or k>1 and β1 with χ4nβ2. Moreover, the solution is globally bounded for the second case with r1β. This means that the logistic source along with non-sublinear production indeed benefits to ensure the global existence-boundedness of classical solution to this chemotaxis system with singular sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信