旋量和笛卡尔圆定理

IF 1.6 3区 数学 Q1 MATHEMATICS
Daniel V. Mathews , Orion Zymaris
{"title":"旋量和笛卡尔圆定理","authors":"Daniel V. Mathews ,&nbsp;Orion Zymaris","doi":"10.1016/j.geomphys.2025.105458","DOIUrl":null,"url":null,"abstract":"<div><div>The classic Descartes circle theorem relates the curvatures of four mutually externally tangent circles, three “petal” circles around the exterior of a central circle, forming a “3-flower” configuration. We generalise this theorem to the case of an “<em>n</em>-flower”, consisting of <em>n</em> tangent circles around the exterior of a central circle, and give an explicit equation satisfied by their curvatures. The proof uses a spinorial description of horospheres in hyperbolic geometry.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"212 ","pages":"Article 105458"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinors and the Descartes circle theorem\",\"authors\":\"Daniel V. Mathews ,&nbsp;Orion Zymaris\",\"doi\":\"10.1016/j.geomphys.2025.105458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The classic Descartes circle theorem relates the curvatures of four mutually externally tangent circles, three “petal” circles around the exterior of a central circle, forming a “3-flower” configuration. We generalise this theorem to the case of an “<em>n</em>-flower”, consisting of <em>n</em> tangent circles around the exterior of a central circle, and give an explicit equation satisfied by their curvatures. The proof uses a spinorial description of horospheres in hyperbolic geometry.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"212 \",\"pages\":\"Article 105458\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025000427\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025000427","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

经典的笛卡尔圆定理将四个相互外部相切的圆的曲率联系起来,三个“花瓣”圆围绕着一个中心圆的外部,形成一个“三花”结构。我们将这一定理推广到由n个围绕中心圆外的相切圆组成的“n花”的情况,并给出了由它们的曲率所满足的显式方程。这个证明使用了双曲几何中对星象的螺旋体描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spinors and the Descartes circle theorem
The classic Descartes circle theorem relates the curvatures of four mutually externally tangent circles, three “petal” circles around the exterior of a central circle, forming a “3-flower” configuration. We generalise this theorem to the case of an “n-flower”, consisting of n tangent circles around the exterior of a central circle, and give an explicit equation satisfied by their curvatures. The proof uses a spinorial description of horospheres in hyperbolic geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信