多元P-和/或q -多项式关联方案

IF 0.9 2区 数学 Q2 MATHEMATICS
Eiichi Bannai , Hirotake Kurihara , Da Zhao , Yan Zhu
{"title":"多元P-和/或q -多项式关联方案","authors":"Eiichi Bannai ,&nbsp;Hirotake Kurihara ,&nbsp;Da Zhao ,&nbsp;Yan Zhu","doi":"10.1016/j.jcta.2025.106025","DOIUrl":null,"url":null,"abstract":"<div><div>The classification problem of <em>P</em>- and <em>Q</em>-polynomial association schemes has been one of the central problems in algebraic combinatorics. Generalizing the concept of <em>P</em>- and <em>Q</em>-polynomial association schemes to multivariate cases, namely to consider higher rank <em>P</em>- and <em>Q</em>-polynomial association schemes, has been tried by some authors, but it seems that so far there were neither very well-established definitions nor results. Very recently, Bernard, Crampé, d'Andecy, Vinet, and Zaimi <span><span>[4]</span></span>, defined bivariate <em>P</em>-polynomial association schemes, as well as bivariate <em>Q</em>-polynomial association schemes. In this paper, we study these concepts and propose a new modified definition concerning a general monomial order, which is more general and more natural and also easy to handle. We prove that there are many interesting families of examples of multivariate <em>P</em>- and/or <em>Q</em>-polynomial association schemes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106025"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate P- and/or Q-polynomial association schemes\",\"authors\":\"Eiichi Bannai ,&nbsp;Hirotake Kurihara ,&nbsp;Da Zhao ,&nbsp;Yan Zhu\",\"doi\":\"10.1016/j.jcta.2025.106025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The classification problem of <em>P</em>- and <em>Q</em>-polynomial association schemes has been one of the central problems in algebraic combinatorics. Generalizing the concept of <em>P</em>- and <em>Q</em>-polynomial association schemes to multivariate cases, namely to consider higher rank <em>P</em>- and <em>Q</em>-polynomial association schemes, has been tried by some authors, but it seems that so far there were neither very well-established definitions nor results. Very recently, Bernard, Crampé, d'Andecy, Vinet, and Zaimi <span><span>[4]</span></span>, defined bivariate <em>P</em>-polynomial association schemes, as well as bivariate <em>Q</em>-polynomial association schemes. In this paper, we study these concepts and propose a new modified definition concerning a general monomial order, which is more general and more natural and also easy to handle. We prove that there are many interesting families of examples of multivariate <em>P</em>- and/or <em>Q</em>-polynomial association schemes.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"213 \",\"pages\":\"Article 106025\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000202\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000202","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

P-和q -多项式关联方案的分类问题一直是代数组合学中的核心问题之一。一些作者已经尝试将P-和q -多项式关联方案的概念推广到多元情况,即考虑更高阶的P-和q -多项式关联方案,但迄今为止似乎既没有非常完善的定义也没有结果。最近,Bernard, crampaud, d'Andecy, Vinet, and Zaimi[4],定义了二元p -多项式关联格式,以及二元q -多项式关联格式。本文对这些概念进行了研究,提出了一个更一般、更自然、更易于处理的关于一般单阶的新的修正定义。我们证明了有许多有趣的多元P-和/或q -多项式关联方案的例子族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate P- and/or Q-polynomial association schemes
The classification problem of P- and Q-polynomial association schemes has been one of the central problems in algebraic combinatorics. Generalizing the concept of P- and Q-polynomial association schemes to multivariate cases, namely to consider higher rank P- and Q-polynomial association schemes, has been tried by some authors, but it seems that so far there were neither very well-established definitions nor results. Very recently, Bernard, Crampé, d'Andecy, Vinet, and Zaimi [4], defined bivariate P-polynomial association schemes, as well as bivariate Q-polynomial association schemes. In this paper, we study these concepts and propose a new modified definition concerning a general monomial order, which is more general and more natural and also easy to handle. We prove that there are many interesting families of examples of multivariate P- and/or Q-polynomial association schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信