Uq(sl2)的Clebsch-Gordan系数与Grassmann图的Terwilliger代数之间难以察觉的联系

IF 0.9 2区 数学 Q2 MATHEMATICS
Hau-Wen Huang
{"title":"Uq(sl2)的Clebsch-Gordan系数与Grassmann图的Terwilliger代数之间难以察觉的联系","authors":"Hau-Wen Huang","doi":"10.1016/j.jcta.2025.106028","DOIUrl":null,"url":null,"abstract":"<div><div>The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism ♮ from the universal Hahn algebra <span><math><mi>H</mi></math></span> into <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let Ω denote a finite set of size <em>D</em> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></math></span> denote the power set of Ω. It is generally known that <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> supports a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module. Let <em>k</em> denote an integer with <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi></math></span> and fix a <em>k</em>-element subset <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of Ω. By identifying <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi><mo>∖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup></math></span> this induces a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module structure on <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> denoted by <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. Pulling back via ♮ the <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> forms an <span><math><mi>H</mi></math></span>-module. When <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi><mo>−</mo><mn>1</mn></math></span> the <span><math><mi>H</mi></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> enfolds the Terwilliger algebra of the Johnson graph <span><math><mi>J</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with respect to <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This result connects these two seemingly irrelevant topics: The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the Terwilliger algebras of Johnson graphs. Unfortunately some steps break down in the <em>q</em>-analog case. By making detours, the imperceptible connection between the Clebsch–Gordan coefficients of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the Terwilliger algebras of Grassmann graphs is successfully disclosed in this paper.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106028"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs\",\"authors\":\"Hau-Wen Huang\",\"doi\":\"10.1016/j.jcta.2025.106028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism ♮ from the universal Hahn algebra <span><math><mi>H</mi></math></span> into <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let Ω denote a finite set of size <em>D</em> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></math></span> denote the power set of Ω. It is generally known that <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> supports a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module. Let <em>k</em> denote an integer with <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi></math></span> and fix a <em>k</em>-element subset <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of Ω. By identifying <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi><mo>∖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup></math></span> this induces a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module structure on <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> denoted by <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. Pulling back via ♮ the <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> forms an <span><math><mi>H</mi></math></span>-module. When <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi><mo>−</mo><mn>1</mn></math></span> the <span><math><mi>H</mi></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> enfolds the Terwilliger algebra of the Johnson graph <span><math><mi>J</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with respect to <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This result connects these two seemingly irrelevant topics: The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the Terwilliger algebras of Johnson graphs. Unfortunately some steps break down in the <em>q</em>-analog case. By making detours, the imperceptible connection between the Clebsch–Gordan coefficients of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the Terwilliger algebras of Grassmann graphs is successfully disclosed in this paper.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"214 \",\"pages\":\"Article 106028\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000238\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

U(sl2)的Clebsch-Gordan系数可以用Hahn多项式表示。这一现象可以用从通用哈恩代数H到U(sl2)⊗U(sl2)的代数同态解释。设Ω表示大小为D的有限集,2Ω表示Ω的幂集。众所周知,C2Ω支持U(sl2)-模块。设k为0≤k≤D的整数,固定Ω的一个k元素子集x0。通过将C2Ω与C2Ω∈x0⊗C2x0识别,在C2Ω上得到一个U(sl2)⊗U(sl2)模块结构,表示为C2Ω(x0)。通过缩回调,U(sl2)⊗U(sl2)-模C2Ω(x0)形成h模。当1≤k≤D−1时,h模C2Ω(x0)包涵Johnson图J(D,k)关于x0的Terwilliger代数。这个结果将两个看似无关的主题联系起来:U(sl2)的Clebsch-Gordan系数和Johnson图的Terwilliger代数。不幸的是,在q模拟的情况下,有些步骤失效了。本文通过绕弯路,成功地揭示了Uq(sl2)的Clebsch-Gordan系数与Grassmann图的Terwilliger代数之间不易察觉的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs
The Clebsch–Gordan coefficients of U(sl2) are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism ♮ from the universal Hahn algebra H into U(sl2)U(sl2). Let Ω denote a finite set of size D and 2Ω denote the power set of Ω. It is generally known that C2Ω supports a U(sl2)-module. Let k denote an integer with 0kD and fix a k-element subset x0 of Ω. By identifying C2Ω with C2Ωx0C2x0 this induces a U(sl2)U(sl2)-module structure on C2Ω denoted by C2Ω(x0). Pulling back via ♮ the U(sl2)U(sl2)-module C2Ω(x0) forms an H-module. When 1kD1 the H-module C2Ω(x0) enfolds the Terwilliger algebra of the Johnson graph J(D,k) with respect to x0. This result connects these two seemingly irrelevant topics: The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs. Unfortunately some steps break down in the q-analog case. By making detours, the imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs is successfully disclosed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信