基于高效视觉变压器网络的快速轻量级自动岩性识别

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Yan Guo , Zhuowu Li , Fujiang Liu , Weihua Lin , Hongchen Liu , Quansen Shao , Dexiong Zhang , Weichao Liang , Junshun Su , Qiankai Gao
{"title":"基于高效视觉变压器网络的快速轻量级自动岩性识别","authors":"Yan Guo ,&nbsp;Zhuowu Li ,&nbsp;Fujiang Liu ,&nbsp;Weihua Lin ,&nbsp;Hongchen Liu ,&nbsp;Quansen Shao ,&nbsp;Dexiong Zhang ,&nbsp;Weichao Liang ,&nbsp;Junshun Su ,&nbsp;Qiankai Gao","doi":"10.1016/j.sesci.2024.100179","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional methods of lithological classification often rely on the expertise of appraisers and the use of sophisticated measuring instruments. These methods are susceptible to staff experience and are time-consuming. To overcome these limitations, researchers have explored the use of rock images and intelligent algorithms to automatically identify rocks. However, models developed for automatic rock properties identification often require high-performance equipment that cannot be readily deployed on lightweight edge devices. To address this problem, we significantly extend our previous research and propose a method for automatic rock properties identification called SBR-EfficientViT. The method is based on an efficient vision converter and builds on our previous training framework. We also developed a training and application flow framework for the method, which can run with memory requirements of less than 720 MB and graphics memory of 1.6 GB. Furthermore, the proposed SBR-EfficientViT-M1 method achieves an impressive accuracy of 94.75%.</div></div>","PeriodicalId":54172,"journal":{"name":"Solid Earth Sciences","volume":"10 1","pages":"Article 100179"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and lightweight automatic lithology recognition based on efficient vision transformer network\",\"authors\":\"Yan Guo ,&nbsp;Zhuowu Li ,&nbsp;Fujiang Liu ,&nbsp;Weihua Lin ,&nbsp;Hongchen Liu ,&nbsp;Quansen Shao ,&nbsp;Dexiong Zhang ,&nbsp;Weichao Liang ,&nbsp;Junshun Su ,&nbsp;Qiankai Gao\",\"doi\":\"10.1016/j.sesci.2024.100179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional methods of lithological classification often rely on the expertise of appraisers and the use of sophisticated measuring instruments. These methods are susceptible to staff experience and are time-consuming. To overcome these limitations, researchers have explored the use of rock images and intelligent algorithms to automatically identify rocks. However, models developed for automatic rock properties identification often require high-performance equipment that cannot be readily deployed on lightweight edge devices. To address this problem, we significantly extend our previous research and propose a method for automatic rock properties identification called SBR-EfficientViT. The method is based on an efficient vision converter and builds on our previous training framework. We also developed a training and application flow framework for the method, which can run with memory requirements of less than 720 MB and graphics memory of 1.6 GB. Furthermore, the proposed SBR-EfficientViT-M1 method achieves an impressive accuracy of 94.75%.</div></div>\",\"PeriodicalId\":54172,\"journal\":{\"name\":\"Solid Earth Sciences\",\"volume\":\"10 1\",\"pages\":\"Article 100179\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451912X24000175\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451912X24000175","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的岩性分类方法往往依赖于评估人员的专业知识和使用复杂的测量仪器。这些方法容易受工作人员经验的影响,而且耗时。为了克服这些限制,研究人员探索了使用岩石图像和智能算法来自动识别岩石。然而,为自动识别岩石属性而开发的模型通常需要高性能的设备,而这些设备不容易部署在轻型边缘设备上。为了解决这个问题,我们大大扩展了之前的研究,提出了一种名为SBR-EfficientViT的岩石属性自动识别方法。该方法基于一个高效的视觉转换器,并建立在我们之前的训练框架之上。我们还为该方法开发了一个训练和应用流程框架,该框架可以在内存要求小于720 MB和图形内存为1.6 GB的情况下运行。此外,提出的sbr - efficientvit1 - m1方法达到了令人印象深刻的94.75%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and lightweight automatic lithology recognition based on efficient vision transformer network
Traditional methods of lithological classification often rely on the expertise of appraisers and the use of sophisticated measuring instruments. These methods are susceptible to staff experience and are time-consuming. To overcome these limitations, researchers have explored the use of rock images and intelligent algorithms to automatically identify rocks. However, models developed for automatic rock properties identification often require high-performance equipment that cannot be readily deployed on lightweight edge devices. To address this problem, we significantly extend our previous research and propose a method for automatic rock properties identification called SBR-EfficientViT. The method is based on an efficient vision converter and builds on our previous training framework. We also developed a training and application flow framework for the method, which can run with memory requirements of less than 720 MB and graphics memory of 1.6 GB. Furthermore, the proposed SBR-EfficientViT-M1 method achieves an impressive accuracy of 94.75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid Earth Sciences
Solid Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
5.00%
发文量
20
审稿时长
103 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信