基于EnMAP数据的先进冠层叶绿素氮反演技术的经验与混合模型优化

Q2 Environmental Science
Mir Md Tasnim Alam , Anita Simic Milas , Jochem Verrelst , Qing Tian , Alia Soleil Kripal , Henry Poku Osei , Md Atiqur Rahman
{"title":"基于EnMAP数据的先进冠层叶绿素氮反演技术的经验与混合模型优化","authors":"Mir Md Tasnim Alam ,&nbsp;Anita Simic Milas ,&nbsp;Jochem Verrelst ,&nbsp;Qing Tian ,&nbsp;Alia Soleil Kripal ,&nbsp;Henry Poku Osei ,&nbsp;Md Atiqur Rahman","doi":"10.1016/j.envc.2025.101114","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates empirical and hybrid physical models for estimating canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) using hyperspectral imagery from the Environmental Mapping and Analysis Program (EnMAP) over Michigan's Kellogg Biological Station in summer 2023. In the empirical approach, six machine learning regression algorithms (MLRAs) have been evaluated. In the hybrid modeling approach, each MLRA was combined with the PROSAIL radiative transfer model. Results show the empirical model outperforms the hybrid model for CNC retrieval, while both perform similarly for CCC. In the empirical approach, KRR demonstrated the best performance among MLRAs for both CCC (RMSE = 0.10 g/m², NRMSE = 9.76 %, R² = 0.93) and CNC (RMSE = 0.10 g/m², NRMSE = 8.13 %, R² = 0.94). In the hybrid modeling, GPR performed best for CCC (RMSE = 0.10 g/m², NRMSE = 9.43 %, R² = 0.93), while KRR remained the top performer for CNC (RMSE = 0.17 g/m², NRMSE = 13.67 %, R² = 0.83). Furthermore, the findings indicate that the hybrid model exhibits greater sensitivity in heterogeneous areas where field data are limited, while both approaches effectively distinguish between organic and non-organic treatments. The nitrogen conversion factor refined from 4.43 to 3.03 for corn in this study significantly improves the accuracy of the estimated CNC. This enhancement provides further evidence of the efficacy of EnMAP imagery in estimating biochemical parameters and its potential application in Precision Agriculture.</div></div>","PeriodicalId":34794,"journal":{"name":"Environmental Challenges","volume":"18 ","pages":"Article 101114"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Empirical and Hybrid Modeling for Advanced Canopy Chlorophyll and Nitrogen Retrieval Technique Using EnMAP Data\",\"authors\":\"Mir Md Tasnim Alam ,&nbsp;Anita Simic Milas ,&nbsp;Jochem Verrelst ,&nbsp;Qing Tian ,&nbsp;Alia Soleil Kripal ,&nbsp;Henry Poku Osei ,&nbsp;Md Atiqur Rahman\",\"doi\":\"10.1016/j.envc.2025.101114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluates empirical and hybrid physical models for estimating canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) using hyperspectral imagery from the Environmental Mapping and Analysis Program (EnMAP) over Michigan's Kellogg Biological Station in summer 2023. In the empirical approach, six machine learning regression algorithms (MLRAs) have been evaluated. In the hybrid modeling approach, each MLRA was combined with the PROSAIL radiative transfer model. Results show the empirical model outperforms the hybrid model for CNC retrieval, while both perform similarly for CCC. In the empirical approach, KRR demonstrated the best performance among MLRAs for both CCC (RMSE = 0.10 g/m², NRMSE = 9.76 %, R² = 0.93) and CNC (RMSE = 0.10 g/m², NRMSE = 8.13 %, R² = 0.94). In the hybrid modeling, GPR performed best for CCC (RMSE = 0.10 g/m², NRMSE = 9.43 %, R² = 0.93), while KRR remained the top performer for CNC (RMSE = 0.17 g/m², NRMSE = 13.67 %, R² = 0.83). Furthermore, the findings indicate that the hybrid model exhibits greater sensitivity in heterogeneous areas where field data are limited, while both approaches effectively distinguish between organic and non-organic treatments. The nitrogen conversion factor refined from 4.43 to 3.03 for corn in this study significantly improves the accuracy of the estimated CNC. This enhancement provides further evidence of the efficacy of EnMAP imagery in estimating biochemical parameters and its potential application in Precision Agriculture.</div></div>\",\"PeriodicalId\":34794,\"journal\":{\"name\":\"Environmental Challenges\",\"volume\":\"18 \",\"pages\":\"Article 101114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Challenges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667010025000344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Challenges","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667010025000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用2023年夏季密歇根Kellogg生物站环境测绘与分析项目(EnMAP)的高光谱图像,评估了用于估算冠层叶绿素含量(CCC)和冠层氮含量(CNC)的经验和混合物理模型。在经验方法中,对六种机器学习回归算法(MLRAs)进行了评估。在混合建模方法中,每个MLRA与PROSAIL辐射传输模型相结合。结果表明,经验模型在CNC检索方面优于混合模型,而两者在CCC检索方面表现相似。在实证方法中,KRR在mlra中表现最好的是CCC (RMSE = 0.10 g/m²,NRMSE = 9.76%, R²= 0.93)和CNC (RMSE = 0.10 g/m²,NRMSE = 8.13%, R²= 0.94)。在混合建模中,GPR对CCC建模效果最好(RMSE = 0.10 g/m²,NRMSE = 9.43%, R²= 0.93),KRR对CNC建模效果最好(RMSE = 0.17 g/m²,NRMSE = 13.67%, R²= 0.83)。此外,研究结果表明,混合模型在野外数据有限的非均质地区表现出更高的敏感性,而这两种方法都能有效地区分有机和非有机处理。在本研究中,玉米的氮转换因子从4.43细化到3.03,显著提高了估算CNC的精度。这进一步证明了EnMAP图像在估计生化参数方面的有效性及其在精准农业中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Empirical and Hybrid Modeling for Advanced Canopy Chlorophyll and Nitrogen Retrieval Technique Using EnMAP Data
This study evaluates empirical and hybrid physical models for estimating canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) using hyperspectral imagery from the Environmental Mapping and Analysis Program (EnMAP) over Michigan's Kellogg Biological Station in summer 2023. In the empirical approach, six machine learning regression algorithms (MLRAs) have been evaluated. In the hybrid modeling approach, each MLRA was combined with the PROSAIL radiative transfer model. Results show the empirical model outperforms the hybrid model for CNC retrieval, while both perform similarly for CCC. In the empirical approach, KRR demonstrated the best performance among MLRAs for both CCC (RMSE = 0.10 g/m², NRMSE = 9.76 %, R² = 0.93) and CNC (RMSE = 0.10 g/m², NRMSE = 8.13 %, R² = 0.94). In the hybrid modeling, GPR performed best for CCC (RMSE = 0.10 g/m², NRMSE = 9.43 %, R² = 0.93), while KRR remained the top performer for CNC (RMSE = 0.17 g/m², NRMSE = 13.67 %, R² = 0.83). Furthermore, the findings indicate that the hybrid model exhibits greater sensitivity in heterogeneous areas where field data are limited, while both approaches effectively distinguish between organic and non-organic treatments. The nitrogen conversion factor refined from 4.43 to 3.03 for corn in this study significantly improves the accuracy of the estimated CNC. This enhancement provides further evidence of the efficacy of EnMAP imagery in estimating biochemical parameters and its potential application in Precision Agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Challenges
Environmental Challenges Environmental Science-Environmental Engineering
CiteScore
8.00
自引率
0.00%
发文量
249
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信