交码几何及其在加性组合学和分解理论中的应用

IF 0.9 2区 数学 Q2 MATHEMATICS
Martino Borello , Wolfgang Schmid , Martin Scotti
{"title":"交码几何及其在加性组合学和分解理论中的应用","authors":"Martino Borello ,&nbsp;Wolfgang Schmid ,&nbsp;Martin Scotti","doi":"10.1016/j.jcta.2025.106023","DOIUrl":null,"url":null,"abstract":"<div><div>Intersecting codes are linear codes where every two nonzero codewords have non-trivially intersecting support. In this article we expand on the theory of this family of codes, by showing that nondegenerate intersecting codes correspond to sets of points (with multiplicities) in a projective space that are not contained in two hyperplanes. This correspondence allows the use of geometric arguments to demonstrate properties and provide constructions of intersecting codes. We improve on existing bounds on their length and provide explicit constructions of short intersecting codes. Finally, generalizing a link between coding theory and the theory of the Davenport constant (a combinatorial invariant of finite abelian groups), we provide new asymptotic bounds on the weighted 2-wise Davenport constant. These bounds then yield results on factorizations in rings of algebraic integers and related structures.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106023"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The geometry of intersecting codes and applications to additive combinatorics and factorization theory\",\"authors\":\"Martino Borello ,&nbsp;Wolfgang Schmid ,&nbsp;Martin Scotti\",\"doi\":\"10.1016/j.jcta.2025.106023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intersecting codes are linear codes where every two nonzero codewords have non-trivially intersecting support. In this article we expand on the theory of this family of codes, by showing that nondegenerate intersecting codes correspond to sets of points (with multiplicities) in a projective space that are not contained in two hyperplanes. This correspondence allows the use of geometric arguments to demonstrate properties and provide constructions of intersecting codes. We improve on existing bounds on their length and provide explicit constructions of short intersecting codes. Finally, generalizing a link between coding theory and the theory of the Davenport constant (a combinatorial invariant of finite abelian groups), we provide new asymptotic bounds on the weighted 2-wise Davenport constant. These bounds then yield results on factorizations in rings of algebraic integers and related structures.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"214 \",\"pages\":\"Article 106023\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000184\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000184","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

交码是线性码,其中每两个非零码字都有非平凡的交支持。在本文中,我们通过证明非退化相交码对应于射影空间中不包含在两个超平面中的点集(具有多重性)来扩展这类码的理论。这种对应关系允许使用几何参数来演示属性并提供相交代码的构造。我们改进了现有的边界长度,并提供了短相交码的显式结构。最后,推广编码理论与有限阿贝尔群的组合不变量Davenport常数理论之间的联系,给出了加权2-wise Davenport常数的新的渐近界。然后,这些界给出了代数整数环和相关结构的因数分解的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometry of intersecting codes and applications to additive combinatorics and factorization theory
Intersecting codes are linear codes where every two nonzero codewords have non-trivially intersecting support. In this article we expand on the theory of this family of codes, by showing that nondegenerate intersecting codes correspond to sets of points (with multiplicities) in a projective space that are not contained in two hyperplanes. This correspondence allows the use of geometric arguments to demonstrate properties and provide constructions of intersecting codes. We improve on existing bounds on their length and provide explicit constructions of short intersecting codes. Finally, generalizing a link between coding theory and the theory of the Davenport constant (a combinatorial invariant of finite abelian groups), we provide new asymptotic bounds on the weighted 2-wise Davenport constant. These bounds then yield results on factorizations in rings of algebraic integers and related structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信