{"title":"多药耐药细菌感染分类的机器学习和神经网络方法","authors":"Preeda Mengsiri , Ratchadaporn Ungcharoen , Sethavidh Gertphol","doi":"10.1016/j.health.2025.100388","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance (AMR) represents a major public health challenge, significantly complicating infection prevention and treatment. This study employs machine learning and neural network techniques to classify multidrug-resistant Gram-negative bacterial (MDR-GNB) infections using electronic health records from 624 patients at Thatphanom Crown Prince Hospital in Thailand. We compared several algorithms, including Logistic Regression, Random Forest, Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), Multilayer Perceptron (MLP), and Light Gradient Boosting Machine (LightGBM), with the MLP model exhibiting the highest accuracy and specificity. Performance was further enhanced by integrating feature selection methods such as Sequential Forward Selection (SFS), Recursive Feature Elimination with Cross-Validation (RFE-CV), and SelectKBest with data augmentation techniques, including ADASYN and SMOTE variants. Utilizing SHapley Additive exPlanations (SHAP) provided valuable insights into the most influential predictors for MDR-GNB. Notably, the MLP model achieved an AUC of 0.70, surpassing prior studies and highlighting its potential to advance clinical decision-making in managing MDR-GNB infections.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100388"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning and neural network approach for classifying multidrug-resistant bacterial infections\",\"authors\":\"Preeda Mengsiri , Ratchadaporn Ungcharoen , Sethavidh Gertphol\",\"doi\":\"10.1016/j.health.2025.100388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimicrobial resistance (AMR) represents a major public health challenge, significantly complicating infection prevention and treatment. This study employs machine learning and neural network techniques to classify multidrug-resistant Gram-negative bacterial (MDR-GNB) infections using electronic health records from 624 patients at Thatphanom Crown Prince Hospital in Thailand. We compared several algorithms, including Logistic Regression, Random Forest, Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), Multilayer Perceptron (MLP), and Light Gradient Boosting Machine (LightGBM), with the MLP model exhibiting the highest accuracy and specificity. Performance was further enhanced by integrating feature selection methods such as Sequential Forward Selection (SFS), Recursive Feature Elimination with Cross-Validation (RFE-CV), and SelectKBest with data augmentation techniques, including ADASYN and SMOTE variants. Utilizing SHapley Additive exPlanations (SHAP) provided valuable insights into the most influential predictors for MDR-GNB. Notably, the MLP model achieved an AUC of 0.70, surpassing prior studies and highlighting its potential to advance clinical decision-making in managing MDR-GNB infections.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"7 \",\"pages\":\"Article 100388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A machine learning and neural network approach for classifying multidrug-resistant bacterial infections
Antimicrobial resistance (AMR) represents a major public health challenge, significantly complicating infection prevention and treatment. This study employs machine learning and neural network techniques to classify multidrug-resistant Gram-negative bacterial (MDR-GNB) infections using electronic health records from 624 patients at Thatphanom Crown Prince Hospital in Thailand. We compared several algorithms, including Logistic Regression, Random Forest, Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), Multilayer Perceptron (MLP), and Light Gradient Boosting Machine (LightGBM), with the MLP model exhibiting the highest accuracy and specificity. Performance was further enhanced by integrating feature selection methods such as Sequential Forward Selection (SFS), Recursive Feature Elimination with Cross-Validation (RFE-CV), and SelectKBest with data augmentation techniques, including ADASYN and SMOTE variants. Utilizing SHapley Additive exPlanations (SHAP) provided valuable insights into the most influential predictors for MDR-GNB. Notably, the MLP model achieved an AUC of 0.70, surpassing prior studies and highlighting its potential to advance clinical decision-making in managing MDR-GNB infections.