迭代集合的相对大小

IF 0.6 3区 数学 Q3 MATHEMATICS
Noah Kravitz
{"title":"迭代集合的相对大小","authors":"Noah Kravitz","doi":"10.1016/j.jnt.2025.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>hA</em> denote the <em>h</em>-fold sumset of a subset <em>A</em> of an abelian group. Resolving a problem of Nathanson, we show that for any prescribed permutations <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, there exist finite subsets <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><mi>Z</mi></math></span> such that for each <span><math><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>H</mi></math></span>, the relative order of the quantities <span><math><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo></math></span> is given by <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. We also establish extensions where <span><math><mi>Z</mi></math></span> is replaced by any other infinite abelian group or where one prescribes some equalities (not only inequalities) among the sumset sizes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 113-128"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative sizes of iterated sumsets\",\"authors\":\"Noah Kravitz\",\"doi\":\"10.1016/j.jnt.2025.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>hA</em> denote the <em>h</em>-fold sumset of a subset <em>A</em> of an abelian group. Resolving a problem of Nathanson, we show that for any prescribed permutations <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, there exist finite subsets <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><mi>Z</mi></math></span> such that for each <span><math><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>H</mi></math></span>, the relative order of the quantities <span><math><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo></math></span> is given by <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. We also establish extensions where <span><math><mi>Z</mi></math></span> is replaced by any other infinite abelian group or where one prescribes some equalities (not only inequalities) among the sumset sizes.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"272 \",\"pages\":\"Pages 113-128\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25000253\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设hA表示一个阿贝尔群的子集a的h倍和集。解决了一个Nathanson问题,证明了对于任意规定的置换σ1,…,σH∈Sn,存在有限的子集A1,…,An,且对于每一个1≤h≤h,量|hA1|,…,|hAn|的相对顺序由σH给出。我们还建立了扩展,其中Z被任何其他无限阿贝尔群取代,或者在求和集大小中规定一些等式(不仅仅是不等式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative sizes of iterated sumsets
Let hA denote the h-fold sumset of a subset A of an abelian group. Resolving a problem of Nathanson, we show that for any prescribed permutations σ1,,σHSn, there exist finite subsets A1,,AnZ such that for each 1hH, the relative order of the quantities |hA1|,,|hAn| is given by σh. We also establish extensions where Z is replaced by any other infinite abelian group or where one prescribes some equalities (not only inequalities) among the sumset sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信