Giampiero M. Gallo , Demetrio Lacava , Edoardo Otranto
{"title":"建立有意义的波动事件模型,对货币政策公告进行分类","authors":"Giampiero M. Gallo , Demetrio Lacava , Edoardo Otranto","doi":"10.1016/j.bdr.2025.100517","DOIUrl":null,"url":null,"abstract":"<div><div>Central Bank monetary policy interventions frequently have direct implications for financial market volatility. In this paper, we introduce an intradaily Asymmetric Multiplicative Error Model with Meaningful Volatility (MV) events (AMEM-MV), which decomposes realized variance into a base component and an MV component. A novel model-based classification of monetary announcements is developed based on their impact on the MV component of the variance. By focusing on the 30-minute window following each Federal Reserve communication, we isolate the specific impact of monetary announcements on the volatility of seven US tickers.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"40 ","pages":"Article 100517"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling meaningful volatility events to classify monetary policy announcements\",\"authors\":\"Giampiero M. Gallo , Demetrio Lacava , Edoardo Otranto\",\"doi\":\"10.1016/j.bdr.2025.100517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Central Bank monetary policy interventions frequently have direct implications for financial market volatility. In this paper, we introduce an intradaily Asymmetric Multiplicative Error Model with Meaningful Volatility (MV) events (AMEM-MV), which decomposes realized variance into a base component and an MV component. A novel model-based classification of monetary announcements is developed based on their impact on the MV component of the variance. By focusing on the 30-minute window following each Federal Reserve communication, we isolate the specific impact of monetary announcements on the volatility of seven US tickers.</div></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"40 \",\"pages\":\"Article 100517\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579625000127\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000127","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Modeling meaningful volatility events to classify monetary policy announcements
Central Bank monetary policy interventions frequently have direct implications for financial market volatility. In this paper, we introduce an intradaily Asymmetric Multiplicative Error Model with Meaningful Volatility (MV) events (AMEM-MV), which decomposes realized variance into a base component and an MV component. A novel model-based classification of monetary announcements is developed based on their impact on the MV component of the variance. By focusing on the 30-minute window following each Federal Reserve communication, we isolate the specific impact of monetary announcements on the volatility of seven US tickers.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.