广义部子分布演化的核方法

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Freese , D. Adamiak , I. Cloët , W. Melnitchouk , J.-W. Qiu , N. Sato , M. Zaccheddu
{"title":"广义部子分布演化的核方法","authors":"A. Freese ,&nbsp;D. Adamiak ,&nbsp;I. Cloët ,&nbsp;W. Melnitchouk ,&nbsp;J.-W. Qiu ,&nbsp;N. Sato ,&nbsp;M. Zaccheddu","doi":"10.1016/j.cpc.2025.109552","DOIUrl":null,"url":null,"abstract":"<div><div>Generalized parton distributions (GPDs) characterize the 3-dimensional structure of hadrons, combining information about their internal quark and gluon longitudinal momentum distributions and transverse position within the hadron. The dependence of GPDs on the factorization scale <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> allows one to connect hard exclusive processes involving GPDs at disparate energy and momentum scales, which is needed in global analyses of experimental data. In this work we explore how finite element methods can be used to construct fast and differentiable <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> evolution codes for GPDs in momentum space, which can be used in a machine learning framework. We show numerical benchmarks of the methods' accuracy, including a comparison to an existing evolution code from PARTONS/APFEL++, and provide a repository where the code can be accessed.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"311 ","pages":"Article 109552"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel methods for evolution of generalized parton distributions\",\"authors\":\"A. Freese ,&nbsp;D. Adamiak ,&nbsp;I. Cloët ,&nbsp;W. Melnitchouk ,&nbsp;J.-W. Qiu ,&nbsp;N. Sato ,&nbsp;M. Zaccheddu\",\"doi\":\"10.1016/j.cpc.2025.109552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generalized parton distributions (GPDs) characterize the 3-dimensional structure of hadrons, combining information about their internal quark and gluon longitudinal momentum distributions and transverse position within the hadron. The dependence of GPDs on the factorization scale <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> allows one to connect hard exclusive processes involving GPDs at disparate energy and momentum scales, which is needed in global analyses of experimental data. In this work we explore how finite element methods can be used to construct fast and differentiable <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> evolution codes for GPDs in momentum space, which can be used in a machine learning framework. We show numerical benchmarks of the methods' accuracy, including a comparison to an existing evolution code from PARTONS/APFEL++, and provide a repository where the code can be accessed.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"311 \",\"pages\":\"Article 109552\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525000554\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000554","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

广义部分子分布(GPDs)结合了强子内部夸克和胶子的纵向动量分布以及强子内部的横向位置信息,表征了强子的三维结构。GPDs对因子分解尺度Q2的依赖性使人们能够在不同的能量和动量尺度上连接涉及GPDs的硬排他性过程,这在实验数据的全局分析中是必需的。在这项工作中,我们探索了如何使用有限元方法来构建动量空间中GPDs的快速可微Q2进化代码,该代码可用于机器学习框架。我们展示了方法准确性的数值基准,包括与来自PARTONS/ apfel++的现有进化代码的比较,并提供了一个可以访问代码的存储库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel methods for evolution of generalized parton distributions
Generalized parton distributions (GPDs) characterize the 3-dimensional structure of hadrons, combining information about their internal quark and gluon longitudinal momentum distributions and transverse position within the hadron. The dependence of GPDs on the factorization scale Q2 allows one to connect hard exclusive processes involving GPDs at disparate energy and momentum scales, which is needed in global analyses of experimental data. In this work we explore how finite element methods can be used to construct fast and differentiable Q2 evolution codes for GPDs in momentum space, which can be used in a machine learning framework. We show numerical benchmarks of the methods' accuracy, including a comparison to an existing evolution code from PARTONS/APFEL++, and provide a repository where the code can be accessed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信