基于溶剂感知接口的SCCS模型的泛函解析推导和CP2K实现

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ziwei Chai, Sandra Luber
{"title":"基于溶剂感知接口的SCCS模型的泛函解析推导和CP2K实现","authors":"Ziwei Chai,&nbsp;Sandra Luber","doi":"10.1016/j.cpc.2025.109563","DOIUrl":null,"url":null,"abstract":"<div><div>In the self-consistent continuum solvation (SCCS) approach (<em>J. Chem. Phys.</em> 136, 064102 (2012)), the analytical expressions of the local solute-solvent interface functions determine the interface function and dielectric function values at a given real space position based solely on the electron density at that position, completely disregarding the surrounding electron density distribution. Therefore, the low electron density areas inside the solute will be identified by the algorithm as regions where implicit solvent exists, resulting in the emergence of non-physical implicit solvent regions within the solute and even potentially leading to the divergence catastrophe of Kohn-Sham SCF calculations. We present a new and efficient SCCS implementation based on the solvent-aware interface (<em>J. Chem. Theory Comput.</em> 15, 3, 1996–2009 (2019)) which addresses this issue by utilizing a solute-solvent interface function based on convolution of electron density in the CP2K software package, which is based on the mixed Gaussian and plane waves (GPW) approach. Starting with the foundational formulas of SCCS, we have rigorously derived the contributions of the newly defined electrostatic energy to the Kohn-Sham potential and the analytical forces. This comprehensive derivation, which to the best of our knowledge is not available in the current literature, utilizes the updated versions of the solute-solvent interface function and the dielectric function, tailored to align with the specifics of the GPW implementation. Our implementation has been tested to successfully eliminate non-physical implicit solvent regions within the solute and achieve good SCF convergence, as demonstrated by test results for both bulk and surface models, namely liquid H<sub>2</sub>O, titanium dioxide, and platinum.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"311 ","pages":"Article 109563"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional analytic derivation and CP2K implementation of the SCCS model based on the solvent-aware interface\",\"authors\":\"Ziwei Chai,&nbsp;Sandra Luber\",\"doi\":\"10.1016/j.cpc.2025.109563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the self-consistent continuum solvation (SCCS) approach (<em>J. Chem. Phys.</em> 136, 064102 (2012)), the analytical expressions of the local solute-solvent interface functions determine the interface function and dielectric function values at a given real space position based solely on the electron density at that position, completely disregarding the surrounding electron density distribution. Therefore, the low electron density areas inside the solute will be identified by the algorithm as regions where implicit solvent exists, resulting in the emergence of non-physical implicit solvent regions within the solute and even potentially leading to the divergence catastrophe of Kohn-Sham SCF calculations. We present a new and efficient SCCS implementation based on the solvent-aware interface (<em>J. Chem. Theory Comput.</em> 15, 3, 1996–2009 (2019)) which addresses this issue by utilizing a solute-solvent interface function based on convolution of electron density in the CP2K software package, which is based on the mixed Gaussian and plane waves (GPW) approach. Starting with the foundational formulas of SCCS, we have rigorously derived the contributions of the newly defined electrostatic energy to the Kohn-Sham potential and the analytical forces. This comprehensive derivation, which to the best of our knowledge is not available in the current literature, utilizes the updated versions of the solute-solvent interface function and the dielectric function, tailored to align with the specifics of the GPW implementation. Our implementation has been tested to successfully eliminate non-physical implicit solvent regions within the solute and achieve good SCF convergence, as demonstrated by test results for both bulk and surface models, namely liquid H<sub>2</sub>O, titanium dioxide, and platinum.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"311 \",\"pages\":\"Article 109563\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525000669\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000669","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自洽连续溶剂化(SCCS)方法[j]。物理学报,136,064102(2012))中,局部溶质-溶剂界面函数的解析表达式仅基于该位置的电子密度来确定给定实空间位置的界面函数和介电函数值,完全不考虑周围的电子密度分布。因此,该算法将溶质内部的低电子密度区域识别为隐式溶剂存在的区域,从而导致溶质内部出现非物理的隐式溶剂区域,甚至可能导致Kohn-Sham SCF计算的发散灾难。我们提出了一种新的高效的基于溶剂感知接口的SCCS实现(J. Chem。理论计算,15,3,1996-2009(2019)),通过利用基于混合高斯波和平面波(GPW)方法的CP2K软件包中基于电子密度卷积的溶质-溶剂界面函数来解决这一问题。从SCCS的基本公式出发,我们严格推导了新定义的静电能对Kohn-Sham势和解析力的贡献。据我们所知,这种全面的推导在当前文献中是不可用的,它利用了溶质-溶剂界面函数和介电函数的更新版本,根据GPW实现的具体情况进行了定制。我们的实现已经经过测试,成功地消除了溶质内的非物理隐式溶剂区域,并实现了良好的SCF收敛,正如体模型和表面模型(即液体H2O,二氧化钛和铂)的测试结果所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional analytic derivation and CP2K implementation of the SCCS model based on the solvent-aware interface

Functional analytic derivation and CP2K implementation of the SCCS model based on the solvent-aware interface
In the self-consistent continuum solvation (SCCS) approach (J. Chem. Phys. 136, 064102 (2012)), the analytical expressions of the local solute-solvent interface functions determine the interface function and dielectric function values at a given real space position based solely on the electron density at that position, completely disregarding the surrounding electron density distribution. Therefore, the low electron density areas inside the solute will be identified by the algorithm as regions where implicit solvent exists, resulting in the emergence of non-physical implicit solvent regions within the solute and even potentially leading to the divergence catastrophe of Kohn-Sham SCF calculations. We present a new and efficient SCCS implementation based on the solvent-aware interface (J. Chem. Theory Comput. 15, 3, 1996–2009 (2019)) which addresses this issue by utilizing a solute-solvent interface function based on convolution of electron density in the CP2K software package, which is based on the mixed Gaussian and plane waves (GPW) approach. Starting with the foundational formulas of SCCS, we have rigorously derived the contributions of the newly defined electrostatic energy to the Kohn-Sham potential and the analytical forces. This comprehensive derivation, which to the best of our knowledge is not available in the current literature, utilizes the updated versions of the solute-solvent interface function and the dielectric function, tailored to align with the specifics of the GPW implementation. Our implementation has been tested to successfully eliminate non-physical implicit solvent regions within the solute and achieve good SCF convergence, as demonstrated by test results for both bulk and surface models, namely liquid H2O, titanium dioxide, and platinum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信